# Ecosystem Services from Crop Management: What They Cost to Supply and What Citizens Will Pay

Scott M. Swinton and Shan Ma Michigan State University

Ecosystem Services and Sustainable Agriculture Michigan SWCS seminar, Mar. 9, 2011



















### Human interaction with ecosystems



"Ecosystem services are the benefits that people obtain from ecosystems." U.N. Millennium Ecosystem Assessment, 2005.

# Agriculture as managed ecosystem

 Agriculture is humanity's oldest and largest managed ecosystem





## But does agriculture provide the array of ecosystem services (ES) we would like?



# **Ecosystem services flows and agriculture: Opportunity to improve**

#### **Services TO**

- Climate/air regulation
- Water provision
- Soil provision
- Pollination
- Pest regulation
- Genetic diversity

### **Disservices TO**

- Pests & diseases



AGRICULTURE (with Forestry & Aquaculture)

#### **Services FROM**

- Food & fiber
- Aesthetics
- Recreation
- Carbon sequestration
- Biodiversity conservation



#### **Disservices FROM**

- Water pollution
- Health risks from agrochemicals
- Greenhouse gasses
- Wildlife habitat loss
- Aesthetics of some farms

### Supply and Demand of a Market Good

### Supply

 How much of a good producers will offer (cost to supply)

### Demand

 How much of a good buyers P\* desire (willingness to pay)

### Equilibrium

- Demand=Supply
- All goods are sold at acceptable price



source: wikipedia.org

## Problem: Sometimes markets don't work

- Many ecosystem services are public goods
  - No way to exclude others from benefitting
    - Climate improvements
    - Water quality
  - So cannot force users to pay for provision
- Many ecosystem disservices are externalities
  - Producer does not face social costs
    - Disposal of excess nutrients in streams & lakes
  - So cannot force producers to incur costs of abating disservices

## Question: Could a market exist for ecosystem services from crop farming?

- Supply: Examine farmers' willingness to accept (WTA) payment for providing enhanced ES
- Demand: Measure residents' willingness to pay (WTP) for added ES that farmers can provide



### **Research Questions**

### Supply

- Are farmers willing to change their land management practices for a payment, and how much?
- Which farmers are willing to change their practices?

### Demand

- Are residents willing to pay for better environmental quality, and how much?
- Which residents are willing pay?

### Equilibrium

- Is there a price for ES from cropland at which supply equals demand?
- Could one design a system of payment for ecosystem services from agriculture?

### **Contingent Valuation Method**

- Hypothetical markets
- Ask willingness to pay/accept by mail survey



3000 MI corn and soybean farmers (56% response)



6000 MI residents (40% response)

# **Supply side**: Farmer willingness to change practices for payment

- Mail survey to 3,000
   Michigan corn or soybean growers in 2008
- Responses from 60%
- Broad diversity of field crop farms

### MICHIGAN STATE

## Crop Management and Environmental Stewardship:

#### A SURVEY OF YOUR OPINIONS



This research aims to understand farmers' views on adopting various low-input cropping practices. There are no right or wrong answers because everyone farms different ground and has different management strategies and marketing plans.

#### Your opinions matter!

By completing this questionnaire you are helping to inform the design of future policies that better reflect the views and concerns of Michigan farmers.

# Current use of environmental crop management practices

- Practices adopted
  - Reduced tillage (83%)
  - Wheat rotated with corn & soybean (65%)

- Practices rarely adopted
  - Nitrogen fertilizer banded to reduce rate (23%)
  - Cover crop before corn (19%)

## Attitude & incentives: Global warming less important "to Me" than "to Society"



# Incentives needed? Consider four low-input crop systems

ES level, management complexity, & payment

| System:       | Α                                                    | В                    | С                          | D          |
|---------------|------------------------------------------------------|----------------------|----------------------------|------------|
| Cover Crops   | None                                                 | Any type over winter |                            |            |
| Rotation      | Corn-Soybean                                         |                      | Corn-Soybean <b>-Wheat</b> |            |
| Fertilization | Broadcast at full MSU rate;<br>Split N based on PSNT |                      |                            | Band apply |
| Pesticide     | Broadcast at label rate                              |                      |                            | Band apply |
| Tillage       | Chisel plow with cultivation as needed               |                      |                            |            |
| Soil Test     | Pre-sidedress Nitrate Test (PSNT)                    |                      |                            |            |

# Payment for Environmental Services: Farmer willingness to change

- If a program run by the federal government would pay you \$X per acre each year for 5 years for using this cropping system, would you enroll in this program? (Yes) (No)
- If Yes, how many acres would you enroll in this program?



Farmers at focus group, 2007

### Farmer decision sequence



### **Farmers Who Would Participate**

- Many farmers who would not otherwise adopt these ES-providing practices will do so if paid.
- Farmers who would participate in the program (adopt new cropping system) tend to:
  - Have higher educational level
  - Perceive more environmental improvement
  - Follow similar practices.
- Farmers who enroll more land acreage tend to:
  - Be younger
  - Own larger farms
  - Rely on the farm for income.

# **Supply of ES: Smaller changes cost less, bigger changes cost more**



### Lessons from the farm survey: Understand the cultivators, Create incentives

- Farming can supply enhanced ecosystem services
- Farming is both life style and livelihood
  - Environmental stewardship matters
  - Income matters too
- Trade-offs (there are many) require incentives
  - Should farmers bear costs if society benefits?
  - Payment for Environmental Services
    - Emerging markets for greenhouse gasses
    - Government programs for soil & water conservation

## **Demand Side Analysis**

Residents' willingness to pay for ecosystem service improvements from croplands



## Farm farming to ES consumption



### Questionnaire design



Would you vote for this program

- 1) if it increased income taxes by \$Y/year?
- 2) if it cost did not cost you anything

varied across residents

### **Consumer Decision Sequence**

In the market?

Would you vote for this program if it did not cost you anything?

Yes



No

WTP>0

WTP=0



WTP Decision

Would you vote for this program if it increased income taxes by \$X/year?





No

WTP>\$X

\$X>WTP>0

### Residents' willingness to pay for ES

- Residents broadly aware of these two ES and most are willing to pay for enhanced ES
- Eutrophic Lakes Reduction
  - Significant effect on the WTP of all respondents
  - Marginal WTP: \$0.54 /person /year for clean-up of one eutrophic lake
- Greenhouse Gas Reduction
  - Only affected the WTP of those who were concerned about global warming (40% in sample)
  - Marginal WTP: \$100 /person /year for a 1% GHG reduction of the 2000 emission level (1.9 million tons)

### Residents willing to pay for ES if they

- Are offered more eutrophic lake and GHG reduction
- Perceive global warming is a problem
- Are younger & more educated
- Have higher income
- Vote

## Mean WTP Curve Show Residents Will Pay More as Eutrophic Lakes Become Fewer



### Mean WTP Curve Show Residents Will Pay More as Greenhouse Gasses Abated

### Mean WTP for reduction in Greenhouse Gas





Reduction in GHG % of 2000 emission level

## Combining supply and demand







## Different farming practices\*

Tillage
PSNT test
Cover crops
Crop rotation
Fertilizer application

### **Environmental improvements\***

Greenhouse gas reduction Eutrophic lake reduction

\* ES produced jointly; consumed separately.

## **Approach**

- Calculate real change in farming practice
  - Additionality between adopted and current practice
- Link additional change in practice to change in environmental improvement
  - practice on 1 acre > number of eutrophic lakes
  - practice on 1 acre > tons of greenhouse gas
- Link payment needed to changing practices with WTP for resulting change in ES at the state level
- Preliminary findings: Willingness to pay is high enough to cover costs—A market could exist!

## Study team

Contact: swintons@msu.edu



Michigan State University

**AgBioResearch** 







KBS LTER

Kellogg Biological Station

Long-term Ecological Researc