

Ecosystem Services – An Introduction

Michigan SWCS

9 Mar 2011

Dr. Patrick Doran

Protecting Nature. Preserving Life.

Aldo Leopold

A thing is right when it tends to preserve the integrity, stability, and beauty of the biotic community. It is wrong when it tends otherwise."

Aldo Leopold

Examine each question in terms of what is ethically and aesthetically right, as well as what is economically expedient.

A thing is right when it tends to preserve the integrity, stability, and beauty of the biotic community. It is wrong when it tends otherwise.

Ecosystem Services

The benefits people derive from the environment

Protecting Nature. Preserving Life.

Provisioning Services

Products obtained from ecosystems

- Food
- Fresh water
- Fuelwood
- Fiber
- Biochemicals
- Genetic resources

Regulating Services

Benefits obtained from regulation of ecosystem processes

- Climate regulation
- Disease regulation
- Water regulation
- Water purification
- Pollination

Cultural Services

Nonmaterial benefits obtained from ecosystems

- Spiritual and religious
- Recreation and ecotourism
- Aesthetic
- Inspirational
- Educational
- Sense of place
- Cultural heritage

Supporting Services

Services necessary for the production of all other ecosystem services

- Soil formation
- Nutrient cycling
- Primary production

A Useful Categorization...

Final ecosystem services

- Tangible benefits to people
- E.g., clean water for drinking
- More direct link to human well-being
- More often valued

Intermediate ecosystem services

- Other ecosystem processes that are needed to produce a final ecosystem service
- E.g., proper nutrient cycling in a watershed
- Less direct link to human well-being
- Less frequently valued

Cropland Agriculture

- Total global value of crops greater than \$1 trillion annually
- Food production has increased by 168% over last 4 decades.
 - Crop production per se not very compatible with biodiversity
 - Most conservation projects seek to make agriculture more

/iaMoi

Forage for Livestock

- Total value more than \$600 billion
- Extensive production often compatible with some biodiversity in grassland systems
- Movement toward more intensive production
- Many "working lands"

 projects at TNC

NDSU Ag Comm

Relevant Services: Timber

- Global value of timber harvest is \$400 billion
- Harvests have increased by 40% over recent decades
- Harvesting can be sustainable or not
- Very common ES project for TNC (IP, Great Bear)

teejaybee

Carbon

- Current market \$140 billion
- Right now less than \$20/ton, may rise with climate agreement
- Projects to increase sequestration may be compatible with biodiversity
- REDD projects usually

MizzD

Erosion Control

- Affects more than 1.1 billion ha per year, moves 75 billion tons of soil
- Reduces farm
 productivity by
 0.1%/yr in the US,
 off-site damages \$28 billion/yr
 - Most TNC projects aim at stopping erosion

cyberdees

Biodiversity

- 3 big "final" ES:
 - Existence value
 - Option value
 - Bequest value
- Very difficult to quantify, but clearly significant (e.g., much TNC fundraising!).
 - Biodiversity motivates a large part of what TNC does, but usually for its intrinsic value

teejaybee

Water Purification (Irrigation, Residential, Industrial)

- More than 1 billion lack access to safe drinking water
- Water-borne diseases kill 1.7 million lives/yr
- Treatment facilities are expensive- \$10's millions
- Natural ecosystems can serve that role. Wetlands are worth \$288/ha for water treatment on average.
- Key ES for TNC: Water funds, floodplain restoration...

USFWS Pacitic

Water Quantity (Irrigation, Residential, Industrial, Hydropower)

- Land-use changes affect quantity of water available
- Maintaining or restoring natural habitat *may* increase water quantity.
- South African example with invasive trees being removed
- Less frequent as a conservation ES project

Recreation and Tourism

- At least \$500 billion annually on just tourism
- Only some tourism and recreation dependent on nature
 - TNC helps promote

 "open space" and

 preserves for
 hunting, fishing, etc.
 - **Ecotourism**

GuideGunnar

Fish Production

- Large volume
 harvested, although
 often from nonnative species
- Can be subsistence, or recreation
- In the US, \$30 billion a year industry

SRC9

Water Timing (Flood Regulation)

- Natural habitat tend to:
 - reduce peak flows
 - increase groundwater infiltration
- Maintaining or restoring natural habitat can thus mitigate flooding

Ecosystem of Opportunity...

Climate Change

Paw Paw Watershed

Freshwater Targets: Paw Paw Mainstem & East Branch

Significantstresses:sedimentationand alteredhydrology

Strategy: application of agricultural

Agricultural Conservation Practices (BMPs)

Ecosystem Services Approach...

The Nature Conservancy

Paw Paw River Conservation

Native Biodiversity

Connectivity with Lake Michigan

Restoration of Native Savanna-Prairie

Coca Cola
Bottling Plant Profitability

Effective Marketing

Water

Water

Quality

Quantity

Efficient
Transportation
of Product

Quality Employee Retention

BMP Prioritization Diagram

Paw Paw Priority Ag BMP Subwatersheds
With consideration of potential water quantity & quality benefits,
watershed position, connectivity, and opportunity

Paw Paw Priority Ag Water Quantity and Quality BMP Areas

0 - 0.94

0.95 - 1.9

2 - 3.5

3.6 - 4

C Soil Priorities

0 - 0.93

0.94 - 2

2.1 - 3

3.1 - 4

Getting Back to Biodiversity

Current analyses underway to do the following:

- 1. Use SWAT analyses to map historic flow conditions.
 - Use fish community data and data on historic agricultural conservation practices to relate fish data to practices.
- Identify the amount of agricultural conservation practices needed in the Paw Paw, and where they should be placed, to attain desired response in fish community (representative of all biodiversity).

