California Water Issues

Agricultural Water Use Efficiency and Conservation

Brandon Souza Agricultural Water Management Council

About the Agricultural Water Management Council

California Water Use

Regional Water Use* in California

- Farms
- Homes & Business
- Agricultural Area
- Urban Area

- Central

Coast

Sacramento Mountain

> San Joaquin

North & South

Colorado

South

Coast

River

Tulare Lake

Acre-feet (thousands)

North Coast

**San

Francisco

49,036

26,083

7,344

** San Francisco Region outflow includes water that originates in other regions.

^{*} Year 2000

California farming...

- 7.3 million irrigated acres
- \$38 billion farm gate value
- More than 400 different types of commodities
- 81,700 farms in California

California farming...

- Average irrigated farm is small, only 162 acres
- \$11,100/acre irrigated,\$3,500/acre dryland
- Surface water prices vary greatly, from less than \$10/af to in excess of \$450/af.

California farming...

Top 20 Commodities for 2008-2010							
	Value and Rank						
Commodity	2008		2009		2010		
			\$1,0	100			
Milk and Cream	6,924,121	(1)	4,537,171	(1)	5,928,150	(1)	
Grapes, All	2,923,015	(2)	3,260,172	(2)	3,201,112	(2)	
Almonds (shelled)	2,343,200	(4)	2,293,500	(4)	2,838,500	(3)	
Nursery	2,726,160	(3)	2,510,290	(3)	2,744,900	(4)	
Cattle & Calves	1,884,660	(5)	1,676,375	(7)	2,089,194	(5)	
Berries, All Strawberries	1,578,175	(8)	1,725,232	(6)	1,796,574	(6)	
Lettuce, All	1,580,831	(7)	1,743,573	(5)	1,642,249	(7)	
Tomatoes, All	1,317,321	(9)	1,539,923	(8)	1,274,213	(8)	
Pistachios	569,900	(14)	592,850	(16)	1,158,840	(9)	
Walnuts	558,080	(16)	747,270	(12)	1,061,330	(10)	
Flowers and Foliage	1,060,489	(10)	936,689	(11)	1,012,221	(11)	
Hay, All	1,797,032	(6)	926,660	(10)	971,090	(12)	
Rice	826,143	(11)	936,958	(9)	789,003	(13)	
Chickens, All	724,667	(12)	691,518	(14)	721,724	(14)	
Oranges, All	558,974	(15)	595,909	(15)	716,059	(15)	
Cotton Lint, All	296,531	(24)	285,797	(24)	610,042	(16)	
Broccoli	663,319	(13)	750,600	(13)	606,082	(17)	
Carrots	517,663	(17)	499,766	(17)	525,858	(18)	
Avocados	328,350	(23)	200,640	(33)	414,948	(19)	
Celery	354,979	(20)	389,141	(18)	380,974	(20)	

Basic Areas of Ag Water Issues

- Supply Issues
 - Stability
 - Infrastructure Management
 - Meeting the changing demands
- Demand Issues
 - Demand Hardening

Statewide Supply Issues

- Instability of Surface Water Supply
 - Natural Variability (Normal CA)
 - Changes in System Operations
 - Storage Operations Changes
 - Diversion Changes

Statewide Supply Issues

• Instability of Surface Water Supply

The Sacramento-San Joaquin River Delta

- Critical to California's Water Supply
- Home to 5 listed endangered species
- Critical, but heavily engineered ecosystem

C.W. "Bill" Jones Pumping Plant (Federal)

Harvey O. Banks Pumping Plant (State)

Statewide Supply Issues

Largest estuary on West Coast

• Over the past 150 years, 1,000 miles of levees built to

create islands

95% of wetlands disappeared

Delta Smelt

Salmon

Supply Issues

- Infrastructure Management
 - Diversion Pumps
 - •Reservoir Dams
 - •Levees

Peripheral Canal

Map data: ESRI, TeleAtlas

Sacramento Bee

Demand Issues

 Agricultural Water Needs are "Hardening"

CA cropping pattern shifting toward permanent plantings

What about Water Use Efficiency?

 California's legislature has directed the Department of Water Resources to develop a method to quantify the efficiency of agricultural water use.

- Leaving aside the legal process, how can we help to:
 - •Improve water supplier delivery efficiency?
 - •Improve grower efficiency? (Distribution Uniformity, etc.)

Water Supplier Efficiency

Water suppliers can experience significant benefits from regularly evaluating their system and conducting water management planning.

When appropriate, implementation of Efficient Water Management Practices (EWMPs) can help to improve efficiency

Efficient Water Management Practices (EWMPs)

The Agricultural Water Management Council, The United States Bureau of Reclamation, and the California Department of Water Resources all require water suppliers to conduct some EWMPs.

Others are voluntary and subject to cost-benefit analysis.

Grower Efficiencies-Techniques and Technologies

Opportunities to help growers improve their irrigation efficiency exist. Ensuring they have access to the tools they need is crucial

Improving access to tools and techniques such as advanced irrigation scheduling and application device selection and improvement can help growers to improve their efficiency.

Grower Efficiencies-Techniques and Technologies

National Center For Appropriate Technologies (NCAT) Irrigation Methods Assistance

CSU Fresno, In-Field Research Facility CATI

California Department of Water Resources Regional Evapotranspiration data, CIMIS

USDA- NRCS Technical Toolkit

Conservation Potential or Appropriate Irrigation Portfolio?

Irrigation Method	Acres Under Method	Average AF/ Acre Applied
Gravity (Furrow/Flood)	4,189,852	3.3 AF/Acre
Sprinkler	1,367,179	2.5 AF/Acre
Drip/Micro	2,336,140	2.6 AF/Acre
Subsurface	66,282	.8 AF/Acre

Water Use Efficiency

• 1967 – 2000

AF applied per acre...2% increase

Production volume increase...89% increase

Questions?

