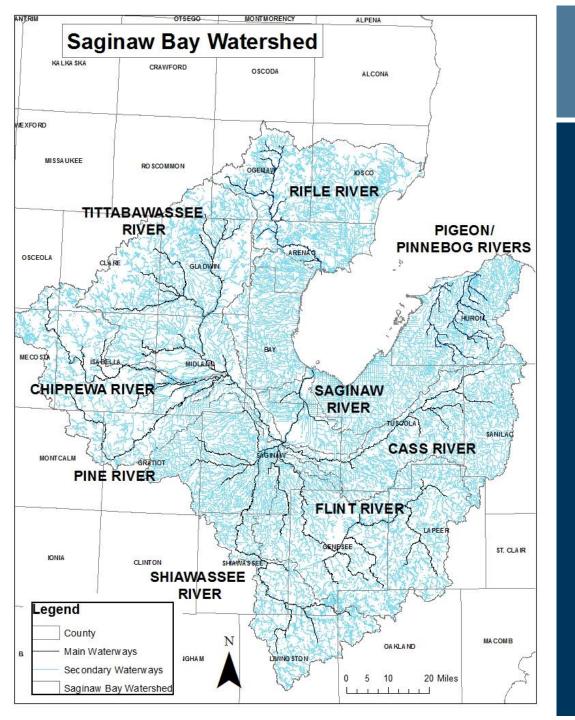


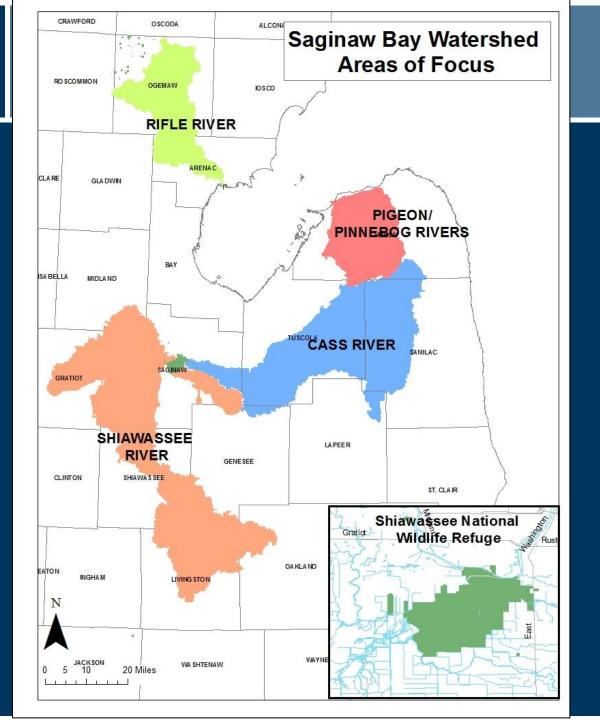
How Much is Enough? Lessons from the Saginaw Bay Watershed

Mary Fales


March 7, 2014

Presentation Outline

- Model and data analysis we developed to answer the question "How Much is Enough?"
- Online tools to help track ecological benefits of conservation
- Implementation Projects
- New funding models


Saginaw Bay Watershed

Michigan's Largest Watershed

- Drains 8,709 mi²
- Covers 22 counties
- 15% of MI's total land area
- 7,000 miles of rivers!

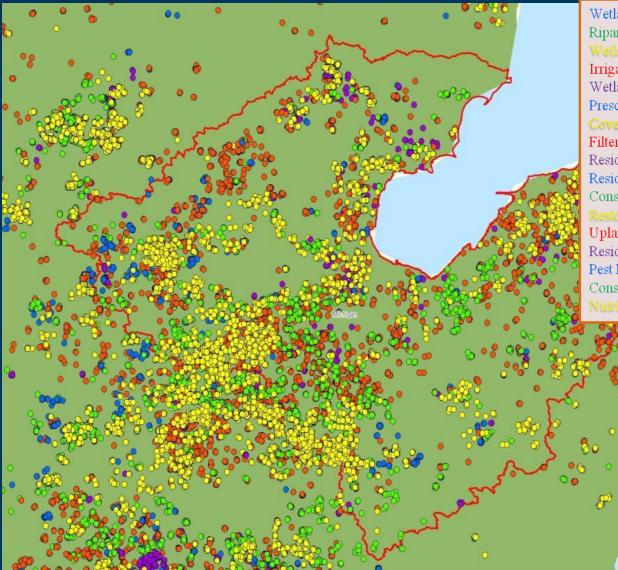
45% agricultural land use

The Focal Problem

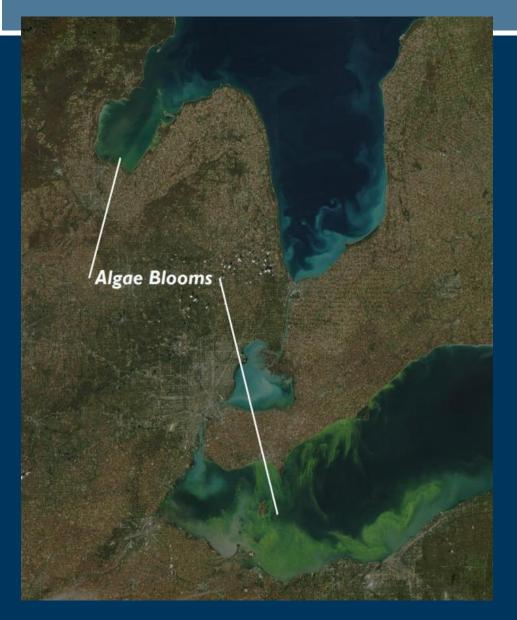
- Agriculture has significantly altered freshwater ecosystems in the US
- We spend \$4.5 Billion on conservation provision of Farm Bill...\$50 million per year in MI
- Perception is this should be enough, but is it?
- Not an easy question to answer



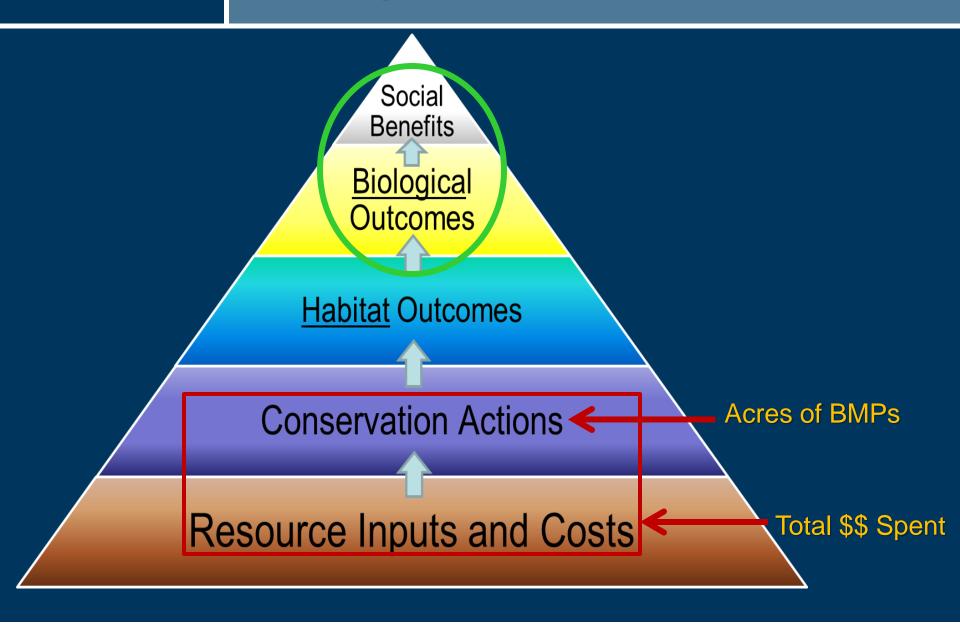
Traditional Approach in Agricultural Watersheds


Where will they have the most impact?

How much is enough?


How Much is Enough?

Wetland Creation Riparian Forest Buffer Wetland Restoration Irrigation Water Management Wetland Wildlife Habitat Management Prescribed Grazing Cover Crop Filter Strip Residue/Tillage Management, Mulch Till Residue/Tillage Management, No-Till Conservation Cover Residue Management, No-Till Upland Wildlife Habitat Management Residue Management, Mulch Till Pest Management Conservation Crop Rotation Nutrient Management



Algae Blooms

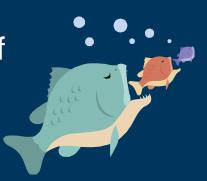
It Depends on Your Goal

Importance of Being Outcome-Based

- Get Healthier?
 - Outcome: Certain Goal Weight or Cholesterol Level
- Get Financially Stable?
 - Outcome: 6 months of savings

- Improve Water Quality
 - Measure: Healthy Fish Community (Index of Biotic Integrity of 90 or higher)

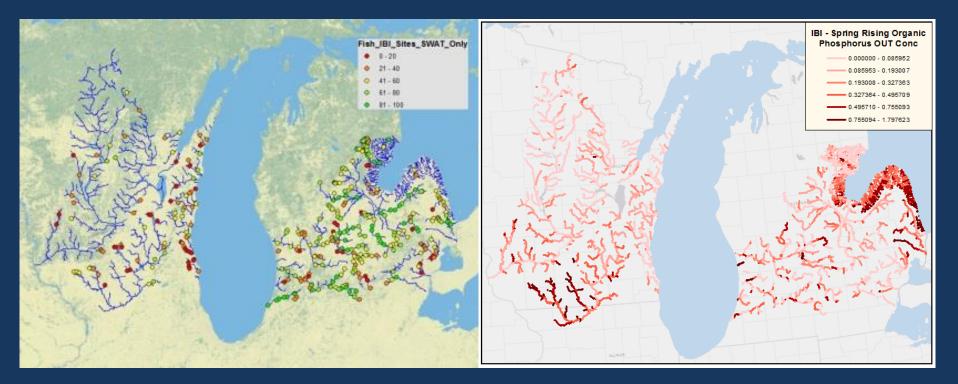
Outcome-Based: Identifying Action Steps


- Get Healthier?
 - Outcome: Certain Goal Weight or Cholesterol Level
 - Tasks: Limit fat and calories to X per day
- Get Financially Stable?
 - Outcome: 6 months of savings
 - Task: Save \$\$ per month, reduce expenses by X%

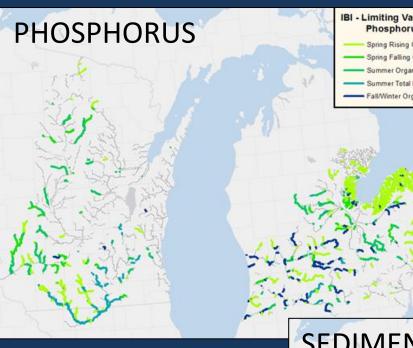
Outcome-Based: Identifying Action Steps

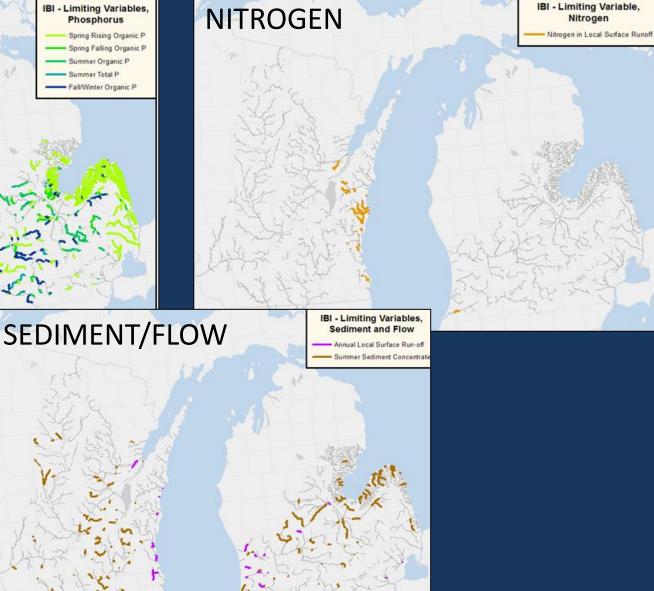
Improve Water Quality

 Measure: Healthy Fish Community (Index of Biotic Integrity of 90 or higher)

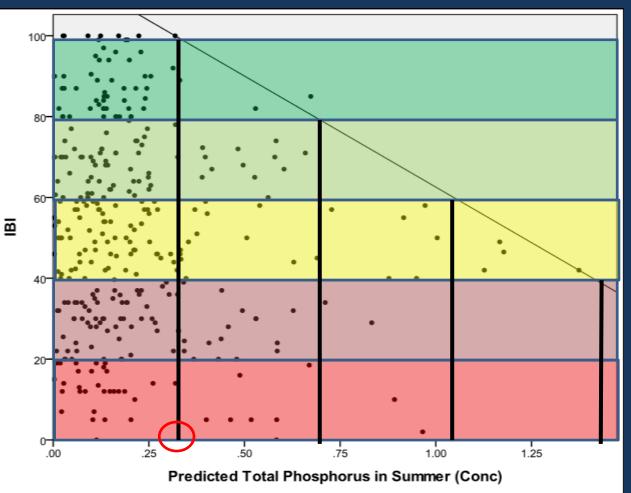


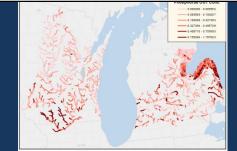
• Tasks:


- Reduce sediment and nutrient levels to a point where they no longer limit the fish community health
- Implement conservation practices
- But How Much is Enough?


Models Linking Fish Communities to Water Quality

Actual Fish community health data vs.
 Predicted water quality (SWAT modeling)

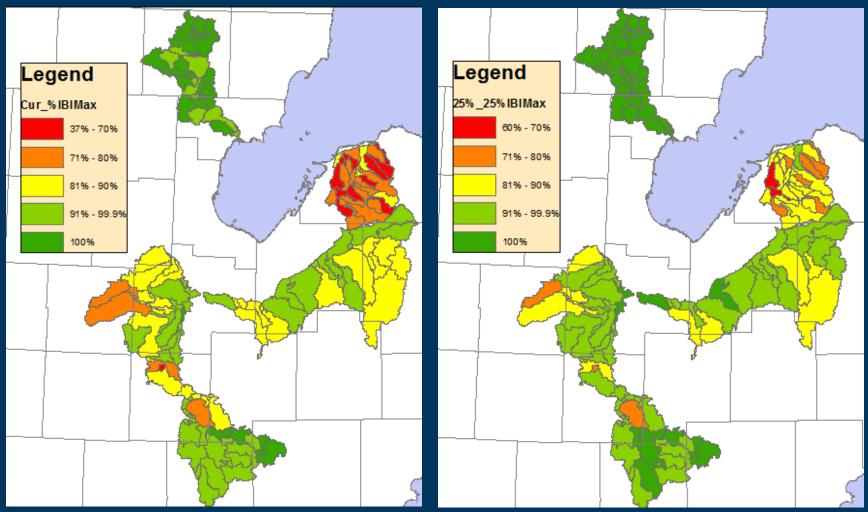

Which Variables Are Limiting and Where?



Phase 1 – Identify "ceilings" to set goals

Phase 2: Linking Practices to Water Quality and Fish

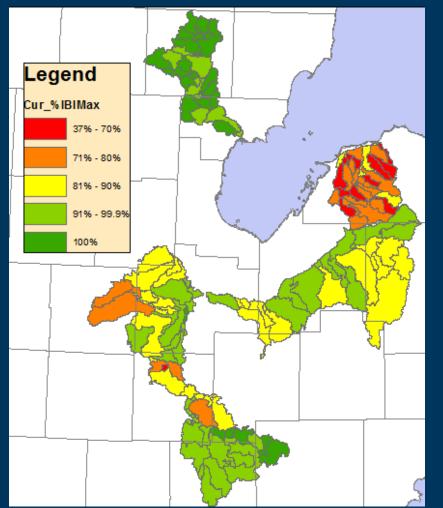
- Within 4 watersheds of Saginaw Bay
- Used SWAT to model changes in water quality under different scenarios (12 BMPs)
 - Current condition
 - Medium (25%)
 - High (50%)
 - Historic Condition
- Assess costs and benefits
 - 25% scenario costs \$22 M
 - 50% scenario costs \$44 M

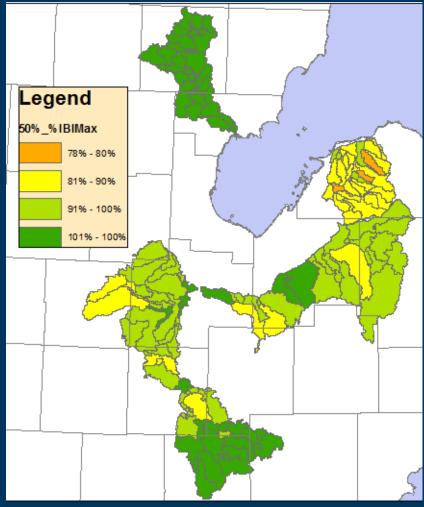


Sub-watershed Comparison: Fish Community Health

Current Condition

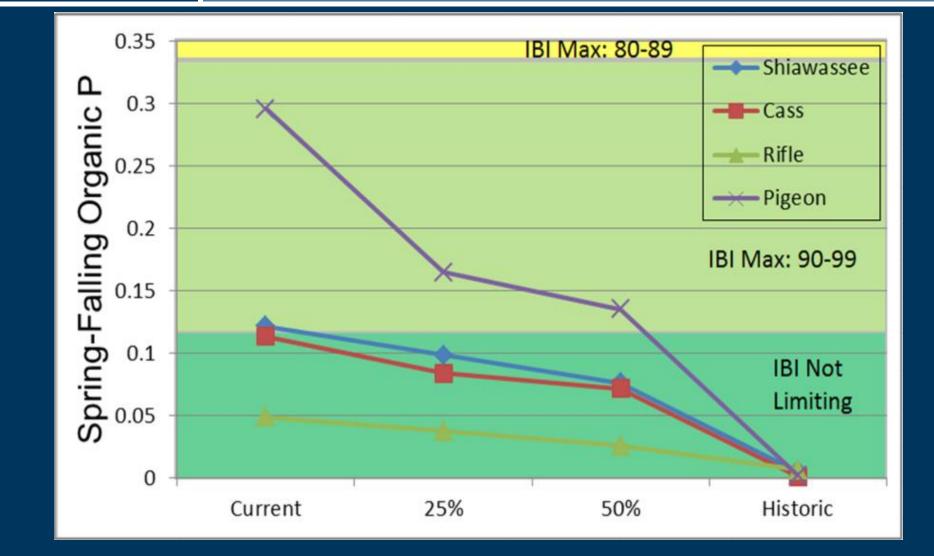
25% BMP





Sub-watershed Comparison: Fish Community Health

Current Condition


50% BMP

Dose Response Curve

QUICK SUMMARY

TNC and partners have developed the science so we can determine:

- 1. HOW MUCH: What percentage of the land needs to be treated with practices
- 2. WHERE: Where conservation practices need to be implemented
- 3. OUTCOME ORIENTED: All the work is tied to improving fish community health

Calculator Tools in the Saginaw Bay Watershed

Technology to target and track progress towards the goal:

- 1. Sediment Calculator
- 2. Nutrient Calculator
- 3. Groundwater Recharge Calculator
- 4. Accounting System (BMP tracker)

All currently being developed by MSU-IWR Will be completed by March 2014 & available online



Sediment and Nutrient Calculators http://35.8.121.111/glwms/

PURDUE

login/logout

Great Lakes Watershed Management System

Introduction

H-H

The Great Lakes Watershed Management System (GLVMS) is an on-line tool that allows users to evaluate non-point source (NPS) pollution model estimates at watershed and field scales. The system links two water quality models, <u>High Impact Targeting</u> (HIT) from the Institute of Water <u>Research at Michigan State</u> <u>University</u>, and the Long Term <u>Hydrologic Impact Assessment (L-THIA) from Purdue University's Department of Agricultural and Biological Engineering. HIT</u>

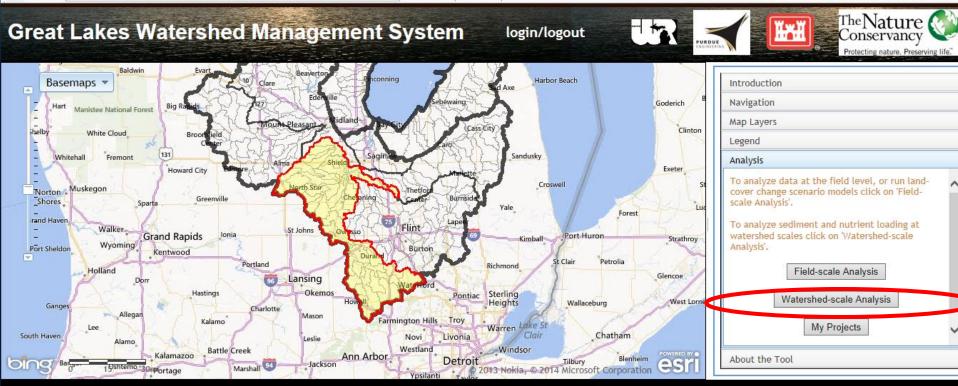
The Nature Conservancy

Protecting nature. Preserving life.

Navigation

Map Layers

Legend


Analysis

About the Tool

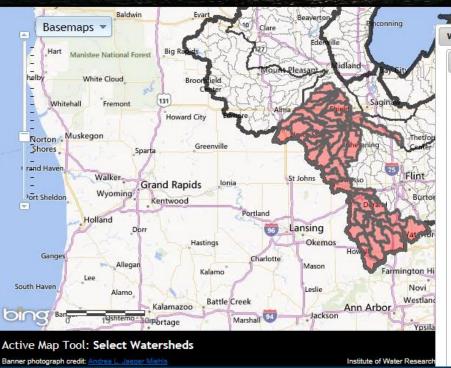
Active Map Tool: Identify features on-click

Watershed Scale Analysis

Active Map Tool: Identify features on-click

-85.33309326, 43.19671

Select Watersheds to Analyze


Watershed-scale Analysis				×				
Select watersheds to analyze Selected	watersheds and data	HIT analysis	L-THIA analysis	Apply a Map Legend				
Select watersheds to gather data on. You can select watersheds interactively on the map, by searching for a watershed name, or by searching for a hydrologic unit code (HUC).								
Watershed selection scale: Sub-waters	shed-HUC12 🗸							
Map Selection:								
Press the 'Activate Watershed Map Select	ion' button; then specify	y the selection to	ol shape and waters	hed scale.				
Deactivate Watershed Map Selection		selection tool	shape: point	·				
Attribute Query: Type in a watershed name or HUC, specify the appropriate attribute type, and click the 'Find Watershed(s)' button.								
Example queries: "Maple River" (find a	II watersheds with the p	hrase 'Maple Rive	er' in their name)					
	watershed with that H		-					
"04050005%" (find all watersheds whose HUC begins with those numbers)								
Query against: Watershed HUC ✓ Query text: 04080203% Find Watershed(s) Find Watershed(s) Find Watershed(s) Find Watershed(s)								
Clear Watershed Selections								

Select Watersheds to Analyze

login/logout

Great Lakes Watershed Management System

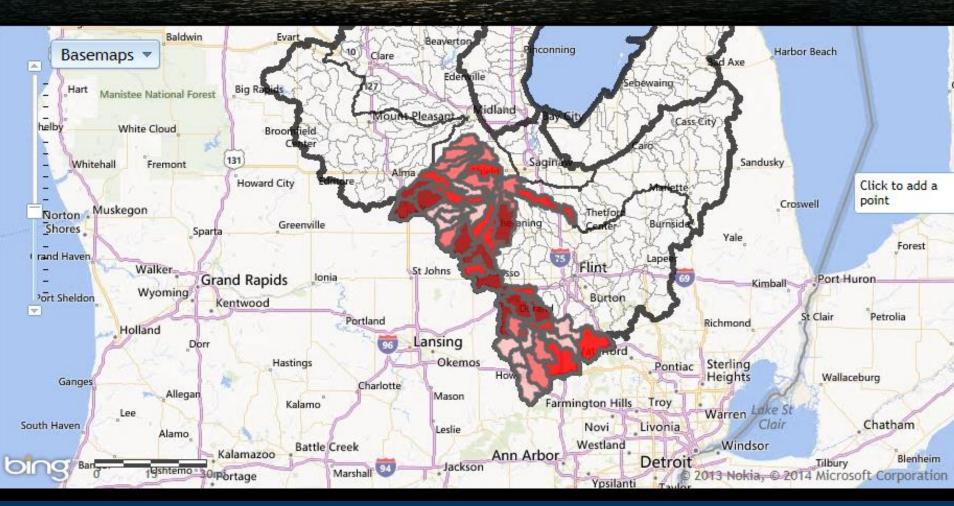
ershed-scale An	alysis						
elect watersheds to	o analyze	Selected watersheds and data	HIT analysis	L-THIA analysis	Apply a Map L	egend	
				Search:			
HUC	\$	Name	2		Acres		
040802030103		Cook Lake-South Brand	h Shiawasee Rive	er	10454		
040802030406		Hatch Run-Sw	an Creek		10529		
040802030302		Limbocker	Creek		11196		
040802030110		11719					
040802030204		11922					
040802030402		11987					
040802030306	Potato Creek						
040802030305		Headwaters Po	tato Creek		13006		
040802030307		Upper Beave	er Creek		13508		
040802030405		Weeks D	rain		13639		
040802030202		Kanause Lake Drain-S	Shiawassee River		13700		
040802030403		Fleming D	Drain		13845		
040802030207		13961					
040802030311	Lower Beaver Creek						
040802030303	Olney Drain-South Fork Bad River 15637						
040802030111	1 Byron Millpond-Shiawasee River 15971						

The Nature Conservancy

HIT Analysis: Sediment

		22								
Watershed-scale Analysis				×						
Select watersheds to analyze	Selected watersheds and data	HIT analysis	L-THIA analysis	Apply a Map Legend						
Use the options below to view erro	Use the options below to view erosion, sediment loading, or BMP targeting impacts in the selected watersheds.									
Current number of selected wate	rsheds: 1									
dataset: 🗹 sediment 🖌										
output: totals (tons/yr) rates(tons/acre/ 	/yr)									
BMPs: (optional) no-till on worst 5 % of sediment contributing areas, at a cost of \$24 * / acre. mulch-till on worst 5 % of sediment contributing areas, at a cost of \$31 * / acre. grass on worst 5 % of sediment contributing areas, at a cost of \$393 * / acre. 30-foot grass buffer on all streams adjacent to ag land, (cost currently unvailable for buffers) * Default costs are based on Michigan 2013 EQIP payments										
Generate HIT Data	* Default costs	are based on <u>mic</u>	<u>Enigan 2013 EQIP pa</u>	ayments						

HIT Analysis: Sediment


Select watersheds to anal	yze Selected watersheds and data HIT analy	Selected watersheds and data HIT analysis L-THIA analys			
		Sear	ch:		
HUC \$	Name	Acres	Sediment loading (t/yr	.)	
040802030301	Brady Creek-Bad River	18791	2573		
040802030309	Shad Creek-Bad River	22998	2207	1	
040802030208	Mickels Creek-Shiawassee River	24642	2193		
040802030304	Lamb Creek	24267	2188		
040802030401	Bear Creek	30450	1942		
040802030203	Holly Drain	22627	1724		
040802030201	Jones Creek	16212	1704		
040802030206	Osburn Drain-Shiawassee River	22182	1522		
040802030205	Scribner Drain-Shiawassee River	20193	1511		
040802030307	Upper Beaver Creek	13508	1455		
040802030209	Deer Creek-Shiawassee River	20061	1356		
040802030106	North Ore Creek	37922	1169		
040802030312	Pickerel Creek	17339	1094		
040802030407	Swan Creek	21891	1053		
040802030409	Birch Run	25480	1040		
040802030207	Sawyer Drain-Shiawassee River	13961	1035	`	

Total Sediment Loading

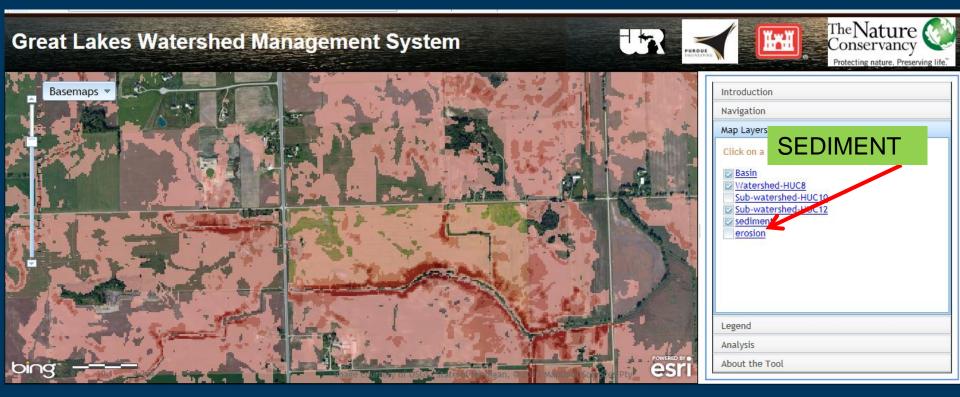
Great Lakes Watershed Management System

login/logout

Zooming in on Specific Farm Field

Basemaps

bing


Look at Risks on a Specific Farm Field

Great Lakes Watershed Management System

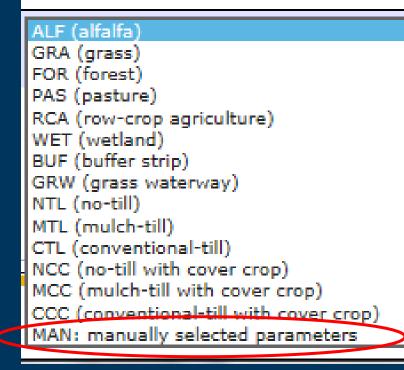
Look at Risks on a Specific Farm Field

Drawing Specific Parcel Boundaries

Great Lakes Watershed Management System

he Nature onservancy	C
otecting nature. Preserv	ing life."

Basemaps -		Introduction
		Navigation
		Map Layers
		Legend
		Analysis
E Insert		To analyze data at the field level, or run land-cover change scenario models click on 'Field-scale Analysis'.
		To analyze sediment and nutrient loading at watershed scales click on Watershed-scale Analysis'.
		Field-scale Analysis Watershed-scale Analysis
		Trateroned Scale Analysis
ping	POWERED BY • Emage courtesy of USGS, State of the state of 2012 hapters state of CSCI	About the Tool


Running Field Scale Analysis

Field-scale Analys	is								
View Baseline NPS	Calculate a Baseline Ch	ange Compare 2 Scenari	os Resu	lts					
	Click the 'Activate' button to activate the digitizer, then draw an area to see how erosion, sediment loading, runoff, or pollutant loading may change between two different land cover scenarios.								
Digitizer: De	-activate Clear Digitized	d Features							
Project Name:	Project Name: Project 1 (for saving and organizing results)								
Model(s) to use	Model(s) to use: HIT (for soil erosion and sediment loading to streams from ag lands) L-THIA (for surface run-off volumes and pollutant loading to streams)								
(click on a column	title for a description)								
Edit optional HIT									
	Feature ID - Scenario	HIT: LC Change/BMP	Acres	Cost/acre (\$)					
X V	3-1	CTL	113.9	Click to edit					
	3-2	NCC	113.9	Click to edit					
			\bigcirc						
Calculate	Convent	ional till to No till w	ith Cove	er Crops					

Selecting BMPs to Model Sediment Loading (HIT Model)

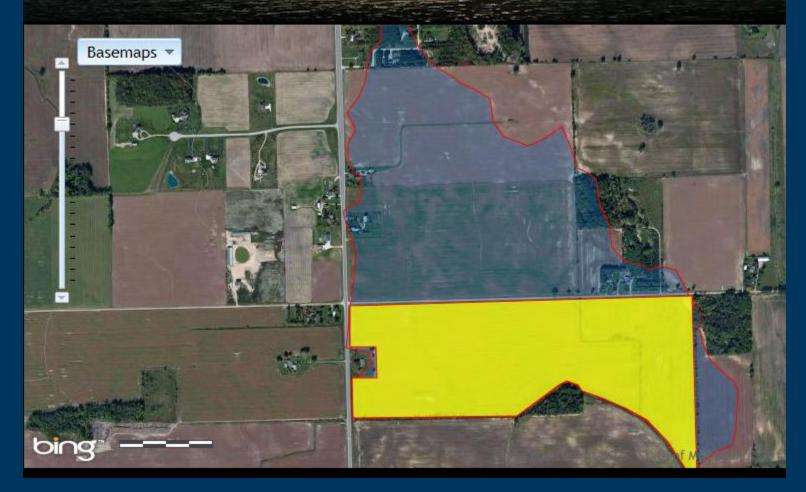
HIT: LC Change/BMP

optional HIT parmaters =											
		Feature ID - Scenario	HIT: LC Change/BMP	Acres	Cost/acre (\$)	C Factor	K Factor	LS Factor	R Factor	Surface Roughness	Delivery Ratio
x	✓	1-1	MAN	140.3	Click to edit	Click to edit	Click to edit	Click to edit	Click to edit	Click to edit	Click to edit

Evaluating Erosion Results: Conventional Till –to- No Till w/Cover Crops

Selecting BMPs to Model Nutrient Loading: LTHIA Model

AgricultureIndext provides surfacesGrass landNo Till (100 %)Grass landOpen space-dirt or grass cover < 50%Conservation Tillage (30%)Impervious surface-20%Open space-gravel or grass cover > 75%Reduced TillImpervious surface-30%Open space-wooded or grass cover > 75%Mulch TillImpervious surface-30%Open space-Wooded or grass cover > 75%30 ft grass bufferImpervious surface-60%Barren LandRiparian Buffer StripImpervious surface-80%Barren LandDetention BasinImpervious surface-90%Barren LandGrass swaleImpervious surface-90%High-density Residential (general 1/3 - 2 ac lots)Cropland generalizedCommercialResidential - 1/2 ac lotsRow Crops (5-20% residue)Commercial/Industrial/TransportatiiResidential - 1/2 ac lotsSmall Grain st rowsParking lot with porous pavement pResidential - 1/2 ac lotsRow Crops (5-20% residue and contour)Parking lot with porous pavement pParking lot with porous pavement pSmall Grain (5-20% residue and contour)Parking lot with porous pavement pParking lot with curbs and gutters and pSidewalkSidewalkForest/WoodsStreet with curbs and gutters and pSidewalkForest/Woods fairStreet with swales and porous paveSidewalk with porous pavementWoods goodWoods fairWeterOpen waterWoods goo		WOODS DOOL	1
Conservation Tillage (30%) Reduced TillImpervious surface-20% Impervious surface-30% Open space-gravel or grass cover > 75% Open space/Park Open space/Park Deprivation Deprivation Parking lot With porous pavement Parking lot with	Agriculture		Grass land
Woods poor green roof Emergent Wetlands (marsh)	No Till (100 %) Conservation Tillage (30%) Reduced Till Mulch Till 30 ft grass buffer Riparian Buffer Strip Detention Basin Grass swale Cropland generalized Row Crops (5-20% residue) Small Grain (5-20% residue) Small Grain st rows Close Seeded legumes Row Crops (5-20% residue and contour) Small Grain (5-20% residue and contour) Small Grain (5-20% residue and contour) Close Seeded legumes contour Pasture/Hay Forest Forest/Woods Trees/Orchard Woods fair	Impervious surface-10% Impervious surface-20% Impervious surface-30% Impervious surface-30% Impervious surface-50% Impervious surface-70% Impervious surface-70% Impervious surface-90% Impervious surface-100% Industrial/Urban Commercial Commercial/Industrial/Transportation Industrial Parking lot Parking lot with porous pavement g Parking lot with porous pavement fa Parking lot with porous pavement p Paved street with curbs and gutters Paved Surface Driveway or Parking Street/Road Street with swales Street with swales and porous pave Streets / other	Open space-dirt or grass cover < 50% Open space-gravel or grass cover 50%-75% Open space-wooded or grass cover > 75% Open Space/Park Open space with bioretention Other Open/Unused Land Barren Land Residential High-density Res. (townhomes - 1/4 ac lots) Low-Density Residential (general 1/3 - 2 ac lots) Residential - 1 ac lots Residential - 1/2 ac lots Residential - 1/2 ac lots Residential - 1/3 ac lots Residential - 1/4 ac lots Residential - 1/8 ac lots Residential - 2 ac lots Driveway with porous pavement Patio Permeable patio Roof Roof rain barrel Sidewalk Sidewalk with porous pavement
Chergene wedands (marsh)			
	woods poor	green root	


Evaluating Nutrient Reduction Results

ld-scale Analysis				
View Baseline NPS Calculate a Ba	aseline Change	Compare 2 So	cenarios Results	
Results:				
Project 1() + remove				
Project 1() + remove				
Project 1() remove				
Calculation type: Change in NPS bet		ios	0017 lb a/m	
digitized acres: 113.9 (green area on map) total acres (including affected upland): 287.8 (blue area on map)			8017 lbs/yr	
L-THIA land cover change / BMP: CROPGEN to NTL			reduced niti	rogen
				ogon
L-THIA Results: total runoff (acre-ft/yr) DECREASE			loss	
nitrogen (lbs/yr) DECREASE:				
phosphorus (lbs/yr) DECREASE:				
suspended solids (lbs/yr) DECREAS			97 lbs/yr red	duced
lead (lbs/yr) DECREASE:	0.11		phosphorus loss	
copper (lbs/yr) DECREASE:	0.11			
zinc (lbs/yr) DECREASE:	1.2			

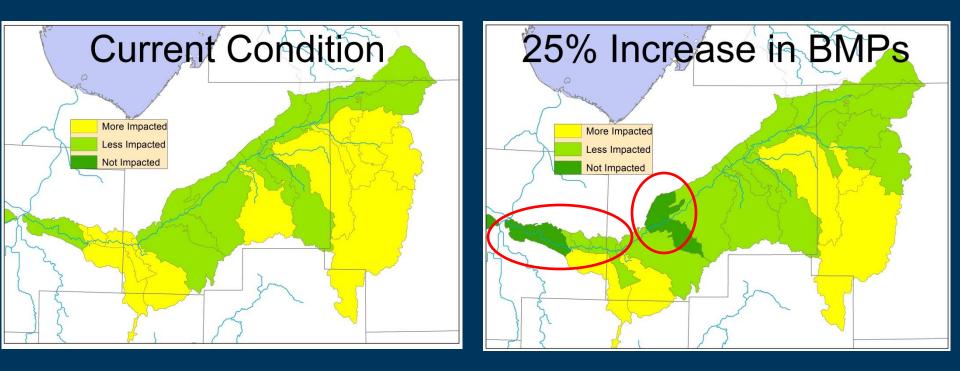
Affected Area Shaded in Blue

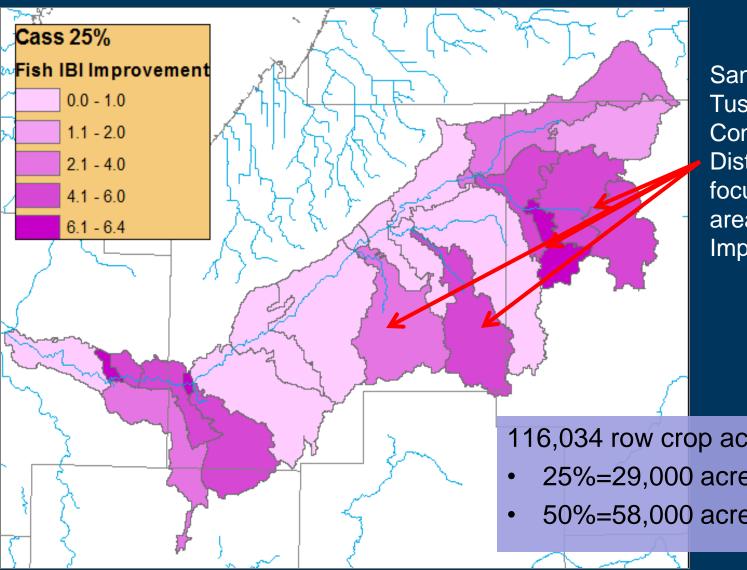
Great Lakes Watershed Management System

Putting the Science into Practice

- 1 Via traditional Farm Bill cost-share programs
- 2. Via the Supply Chain Influences
- 3. Via Pay for Performance

PROJECT: Cass River Watershed


- Partnering with Conservation Districts
 - \$120,000 C.S. Mott Foundation
- Targeted outreach to areas with largest potential for impact


Cass River Subwatershed Comparison

Health of the Local Fish Community

Where do fish improve the most?

Sanilac and Tuscola Conservation Districts will be focusing in these areas for Implementation

116,034 row crop acres total

- 25%=29,000 acres
- 50%=58,000 acres

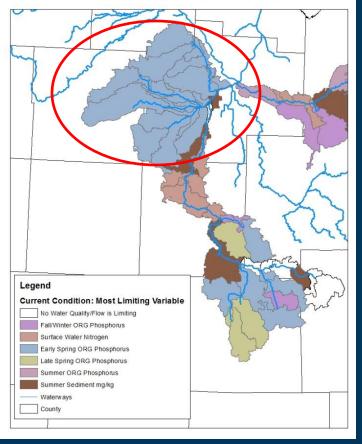
Cass River Watershed Demo Project

COVER CROPS

WETLAND RESTORATION

Cass River Watershed Demo Project

Practice	Goal Acres	Oct 2013 Update
Nutrient Management	12,000	8,687
Conservation Crop Rotation	3,000	1,191
Tillage Mgt (No Till, Strip Till, Mulch Till)	15,000	1,506
Cover Crop	3,000	881
Filter Strip		7.3 acres
Wetland Creation/Restoration	5-7 sites (min 1 acres)	13 acres (8 sites)

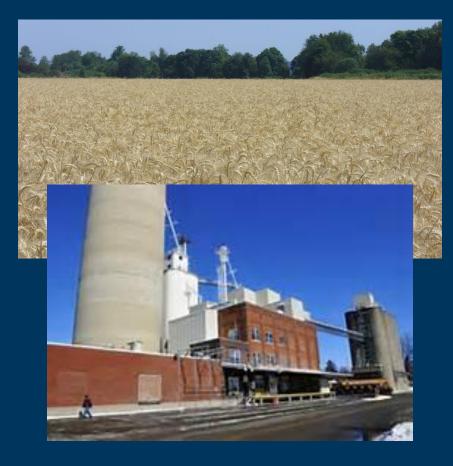

These goals are contingent on securing funding via Farm Bill program.

Testing Transactions: Pay for Performance

Sediment Reduction in the Bad River Watershed

- Partner: Gratiot Conservation District, NRCS
- Great Lakes Commission Grant (\$250,000)
- Develop a watershed goal for sediment reduction
- Set a payment rate for sediment reduction (\$/ton)
- Using the sediment calculator to determine reduction amount

Testing Transactions: Drain Fee Reduction Project



Shiawassee River Watershed

- Partners: County Drain
 Commissioner, MSU-IWR,
 local conservation district
- Cook Family Foundation invited proposal
- Develop a watershed goal for sediment reduction
- Set a discount value for sediment reduction (\$/ton)
- Using the sediment calculator to determine reduction amount

Supply Chain: Kellogg influences wheat farmers to implement conservation practices

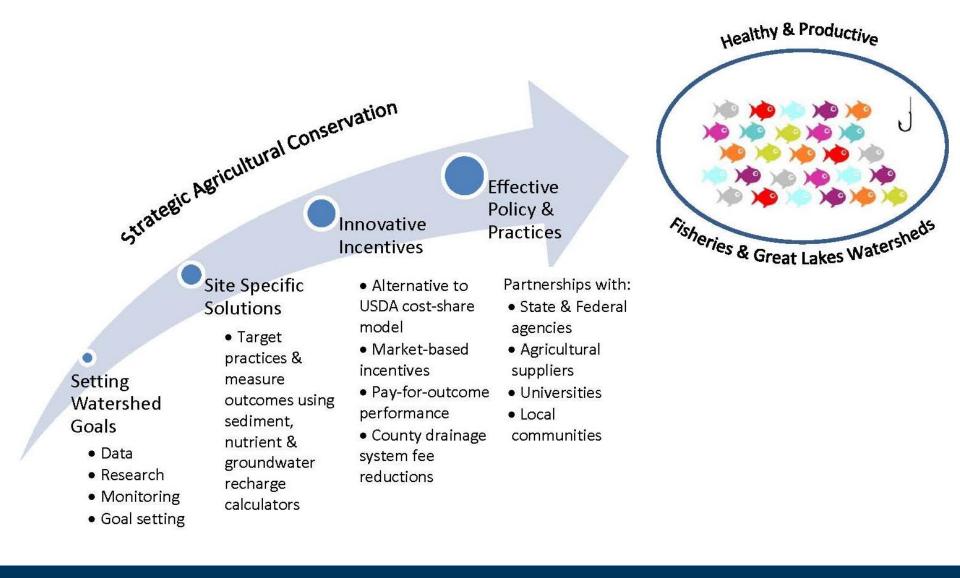
Kelloggis

Cass River Pilot Project

- Partners: Kellogg, Star of the West Milling Co, MSU-IWR
- Set a watershed sustainability goal (P reduction in lbs)
- Train crop advisors on use of calculators
- Voluntary implementation
- Track progress towards goal using BMP tracker

Many Stakeholders Involved in Implementation!

Funders


- C.S. Mott Foundation
- USDA-NRCS CEAP
- Great Lakes Commission
- Great Lakes Protection Fund
- Kellogg Company
- U of M Water Center (Erb)
- Cook Family Foundation
- Herrick Foundation
- Americana Foundation

Partners/Stakeholders

- MSU-IWR, SVSU
- County Drain Commissioners
- Conservation Districts
- Private Companies (Star of the West, Michigan Sugar)
- Natural Resources
 Conservation District (NRCS)
- MDEQ, MDNR, MDARD
- USFWS, USGS
- Saginaw Bay WIN
- Farm Bureau
- Legislative Leaders
- Cass River Greenway, Friends
 of the Shiawassee River

Great Lakes Project AG Strategy: Theory of Change

