
Keeping N and P out of Surface Water with Cover Crops

Why so much SRP in Surface Water?

Dr. K. Rafiq Islam, Research Scientist & Alan Sundermeier, Associate Professor Jim Hoorman, Assistant Professor, Agriculture and Natural Resources hoorman.1@osu.edu

Forming

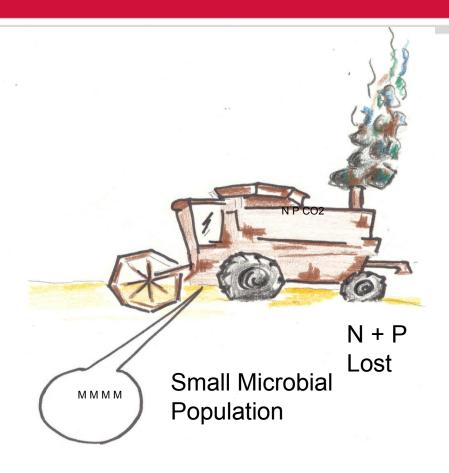
Slow "Pool" Passive "Pool"

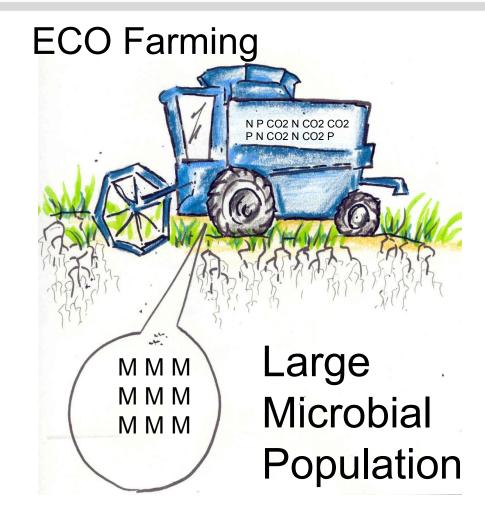
and high CO, flux

Active "Pool" Slow "Pool" Passive "Pool"

Soil Energy Comes from Plants

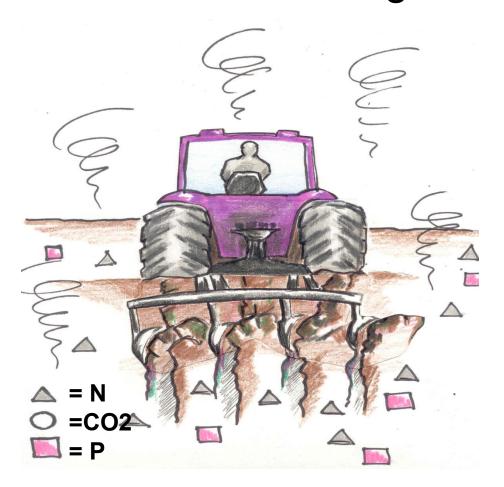
Conventional Tillage


No-till +Cover Crops "ECO Farming"

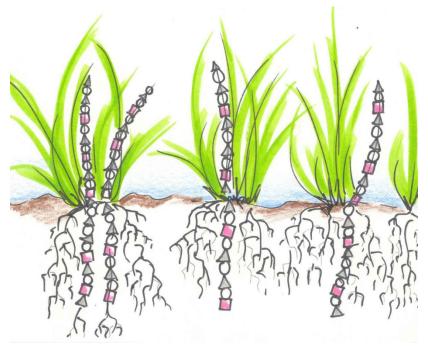


Plants 4 months out of 12 months Fuel & Energy = 1/3 of time Plants 12 months out of the year Fuel & Energy = 100% of time

Soil Microbes Harvest & Recycle Nutrients



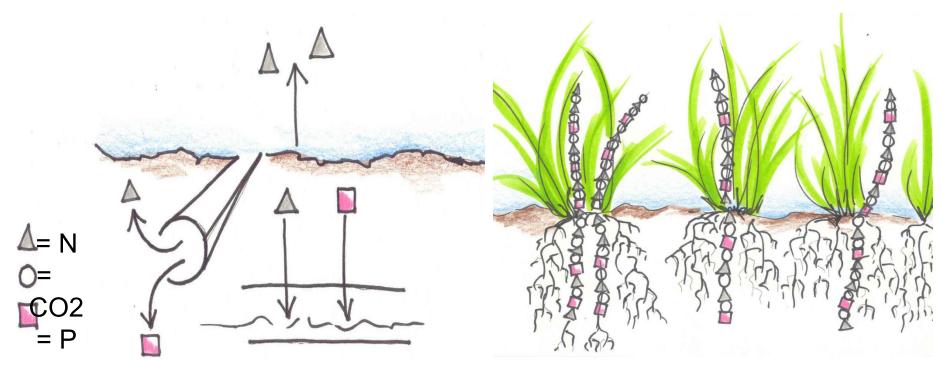
Conventional tillage



Tillage Burns Soil Organic Matter

Conventional Tillage

ECO Farming

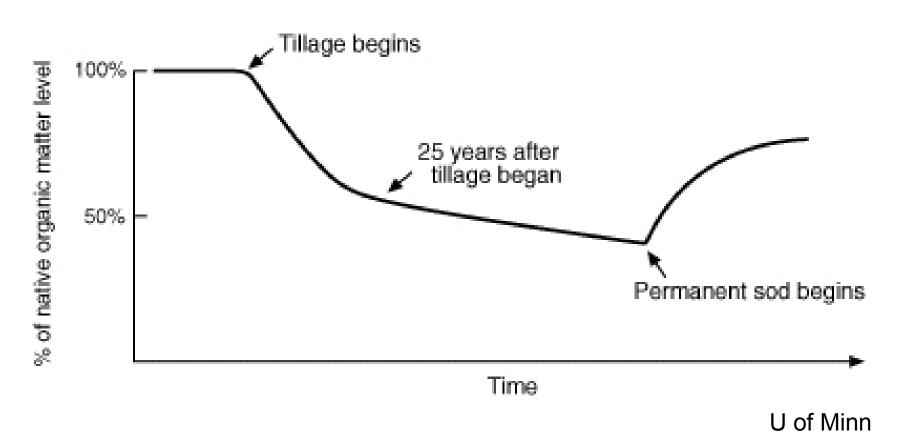


Nutrients (CO2, N, P) tied up in Plants.

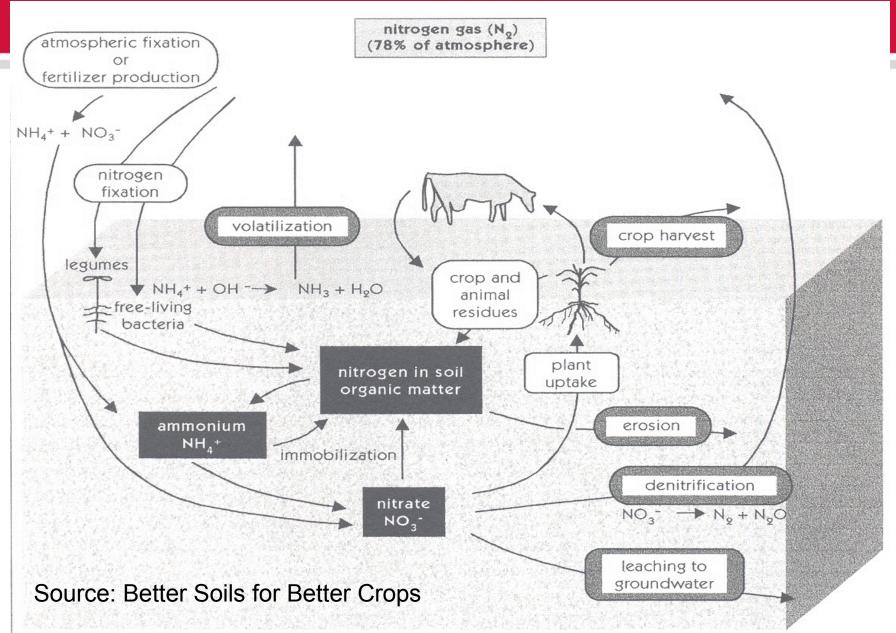
Nutrient Fate in Winter and Spring

Conventional Tillage

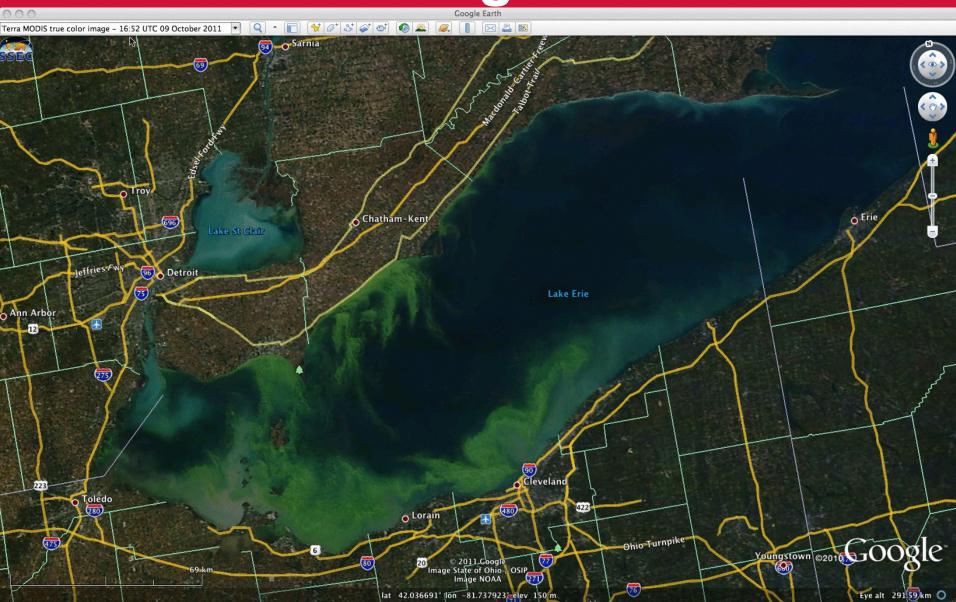
ECO Farming



Nutrients lost to air and water because no plant roots to absorb nutrients (N, P).

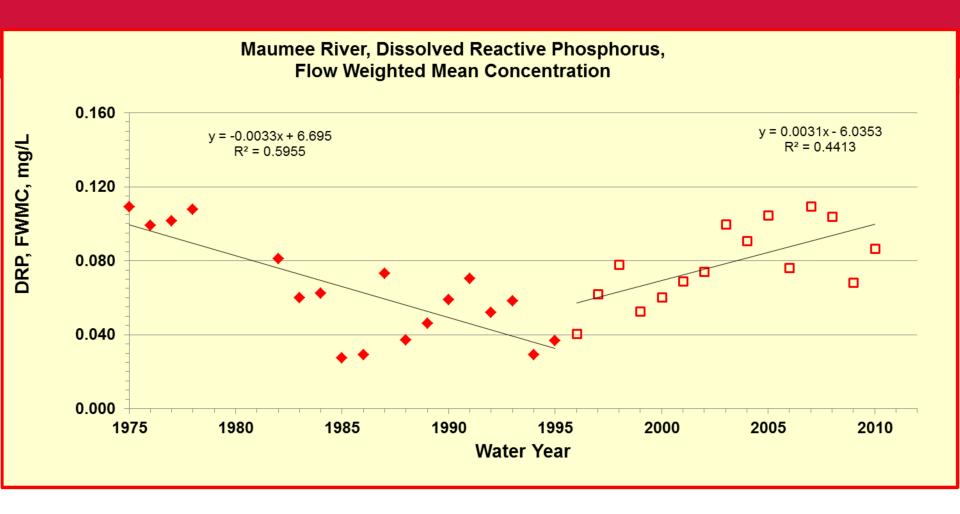

Nutrients recycled in winter & spring & carried forward to next crop.

Soil Organic Matter Loss

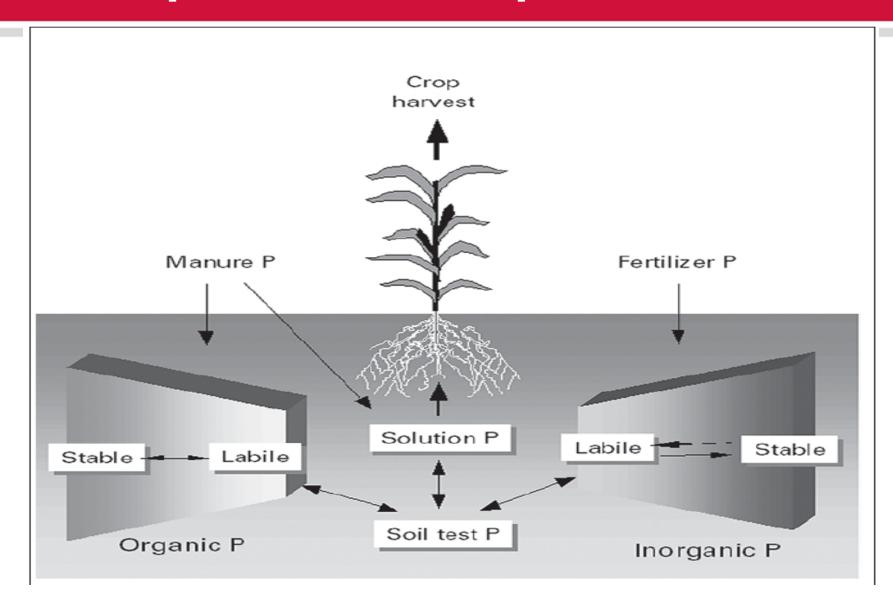

Recent research

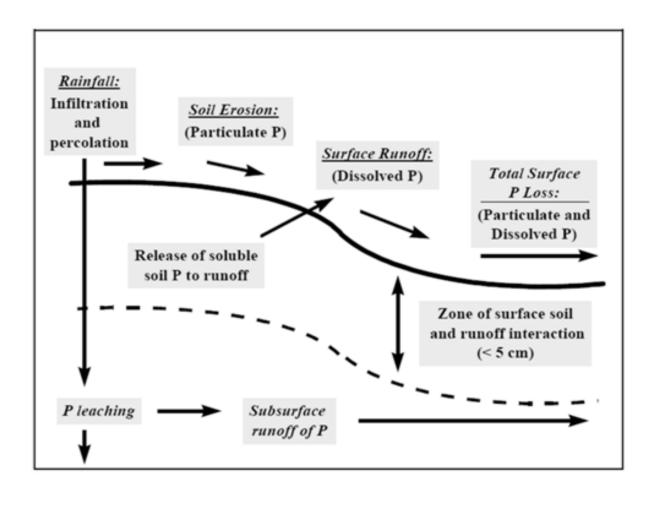
Nitrogen Recycling

10/09/11 Image Lake Erie

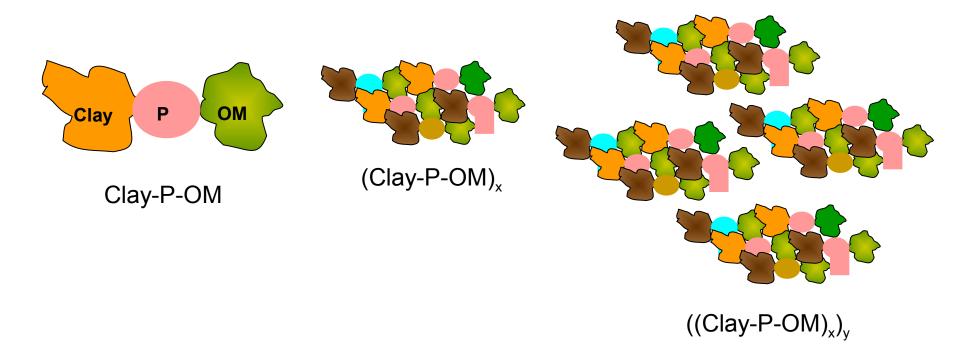

July, 2011

Source:http://www.glerl.noaa.gov/res/Centers/HABS/graphics/wle_hab2_%20072211.jpg


Grand Lake St. Marys 2010



Source: Hiedelberg University


Phosphorus in Crop Production

Phosphorus Losses to the Environment

P stabilizes the OM and forms a bridge to the clay. Our current P use efficiency is 10-25-50%.

Common P Information

- Current P Use Efficiency 10%-25%-50%
 Best estimate: 25% P Use Efficiency
- 80% of P runoff comes from 20% of land
- 90% of P runoff occurs in the 1-2 most intense rainfall events that occur each year!
- While P soil concentration is critical, most P runoff comes from fields close to streams.

OSU Research study

- Sundermeier, Islam, Hoorman 2013-2014
- Took 50 soil samples comparing no-till versus conventional, cover crop versus bare soil, organic versus conventional, manure (poultry, dairy, none), and crop rotation.
- Samples taken at following depths:
 - 10 cm (4 inches), 20 cm (8 inches),
 - 30 cm (12 inches)

Phosphorus Speciation: How Soil P is tied up

Microbial – P_o

- P_o-Organic P
- Soluble Reactive (SRP) P_i P_i-Inorganic P
- Ca²⁺/Mg ²⁺

Calcium/Magnesium

• Fe³⁺/Al³⁺

Iron/Aluminum

Res P₀

Residual P - Humus

Total P

- $= AII P_o + AII P_i$
- Murphy & Riley Standard P Extraction(1962)

Key Findings

- Management influences P soil distribution.
- Most soil P tied up by Residual P_o, Fe/Al, and Ca/Mg.
- Only a small amount is SRP or P_i
- Concentration of P decreases with increasing soil depth.
- SRP and EP (which are easily plant available) are influenced by management practices and depth.

Phosphorus Speciation

Oxidized State

Reduced State

Iron (III) - Fe³⁺ (Ferric Fe) Yellow-Red Iron (II) - Fe²⁺ (Ferrous Fe) Yellow-Grey

Manganese – MN⁴⁺ Pinkish Color Manganese - MN²⁺ Grey-Black

Copper – Cu³⁺ Light Blue

Copper - Cu²⁺ Green

SRP in Surface Water

Two Key factors:

- a) Soil P concentration
- b) Transport Factor

Soil P concentration

- * Transport Factor
- = Pounds of P Lost to Surface Water

Ferric-P to Ferrous-P

$$2 \text{ Fe}^{3+} - 3\text{H}_2\text{PO}_4$$
 $H_2\text{PO}_4 + 2 \text{ Fe}^{2+} - 2\text{H}_2\text{PO}_4$ $2^+ 3 = 6^+ 3^* 2^- = 6^ 2^+ = 2^- 2^* 2 = 4^+ 2^* 2 = 4^-$

Caused by Saturated Soil Conditions and Lack of Oxygen in top 2-3 inches of soil profile.

Flashiness in Streams causes two problems

- 1)Increases sediment high in clay and P
- 2)Less oxygen in top 2-3 inches of soil profile by holding water back. Chemistry of Rice Soils

Key Findings: Conventional Tillage vs Organic

- SRP and EP are significantly higher organic fields versus conventionally tilled fields.
- CaP and FeP, Res P, and Total P was significantly lower in organic fields versus conventionally tilled fields.
- SRP (0.63-0.83%) and EP (0.09 to 0.13%) are only a small percentage of the Total P.

Stratification of P by Tillage

- No major differences except in conventional tillage, FeP (1.5a) was significantly higher than organic FeP (1.2b).
- All other values including SRP, EP, CaP, Res P, and TP were not significantly different.

Conventional vs No-Till

SRP	EP	CaP	FeP	Res P	Total P
Conventional					
0.69b	0.08a	17.3a	27.5b	133.7b	179.3b
No-till					
0.93a	0.19b	16.9a	19.4b	169.6a	208.2a

No-till had significantly higher soil concentration of P in the SRP, EP, Res P, and TP fractions.

Conventional vs No-Till P Stratification

SRP	EP	CaP	FeP	Res P	Total P
Conventional					
1.3b	8.4b	1.4a	1.5a	1.4b	1.4b
No-till					
1.7a	20.1a	1.4a	1.0b	1.8a	1.7a

No-till had significantly higher soil stratification of P in the SRP, EP, and TP fractions but significantly lower FeP fraction.

Distribution of P by Crop Rotation

SRP: Filter strips (4.76 a) + Forest (4.39a) >
 Alfalfa(2.60b) > c-s (.74c), c-c (.73c), s-s (.67c), c-s-w (.47c).

• EP did not vary much except c-s (0.03b), and s-s (0.02b) were significantly lower than others (0.28a).

Distribution of P by Crop Rotation

```
    CaP: c-s (31.4a) + c-c (27.6a) >
    alfalfa (15.8b) + s-s (13.6b) + c-s-w (12.4 b) >
    Forest (3.9c) + Filter (7.3 c)
```

Distribution of P by Crop Rotation

Total P: s-s (232.5a) >

Forest (165.0c)

What is characteristic of soybeans? High P demand, Lower SOM and fewer roots!

Key Findings: Crop Rotation

- SRP was significantly higher in Vegetative Locations than in fields with annual crops.
 Why? Is it due to less SOM? Is it due to more P runoff? Or do crops absorb more P?
- Why is the highest CaP and FeP found under crop land?
- EP does not vary significantly except on s-s (.02b) and c-s (.03b) rotations (c-s-w, .14a) where it was lower. Soybeans require P!

Stratification of P by Crop Rotation

Crop Rotation	SRP	EP	СаР	FeP	Res P	Total P
C-S-W	0.2c	2.6c	5.1b	6.8c	2.0a	2.3b
C-C	0.3c	3.4c	11.5a	19.4b	1.6b	2.1b
C-S	0.3c	0.6d	13.0a	28.1a	1.5b	2.8b
S-S	0.3c	0.3d	5.7b	24.7a	2.1a	2.6a
Alfalfa	0.9b	5.7b	6.6b	1.4d	2.0a	2.1b
Field Strip	1.7c	7.0a	3.0c	18.3b	1.8a	2.5a
Forest	1.5c	7.3a	1.6c	1.4d	1.9a	1.8c

Key Findings

- SRP and EP stratification of P highest under Filter Strips and Forest.
- However, CaP highest under c-c and c-s.
- FeP highest under c-s and s-s, crop rotations probably due to soybeans and high acidity.
- Forest and alfalfa had the lowest FeP stratification. Note higher FeP under filter strips. Why?

Cover Crops versus Control

SRP	EP	CaP	FeP	Res P	Total P
Cover Crops					
0.34b	1.23a	21.2a	25.7a	147.7b	196.1b
	8.8X				
Control					
1.42a	0.14b	18.0b	27.1b	162.8a	209.5a
4.2X				1.1X	1.07

Cover crops had significantly lower soil concentration of P in the SRP (4.2x less), Res P, and Total P but much higher EP (8.8X), CaP, and FeP.

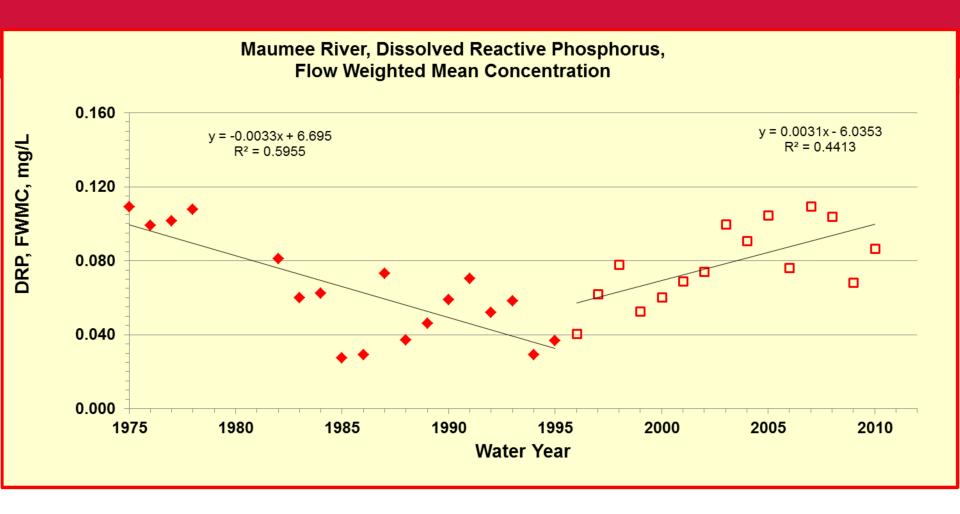
Cover Crops vs Control Stratification

SRP	EP	CaP	FeP	Res P	Total P
Cover Crops					
0.4b	61.7a	1.6a	1.4a	1.5b	2.0a
	9.1X				1.25X
Control					
1.8a	6.8b	1.4a	1.4a	1.6a	1.6b
4.5X					

Cover crops (Red clover) had significantly lower soil stratification of P in the SRP fraction but significantly higher EP and TP fractions.

Bringing Knowledge to Life

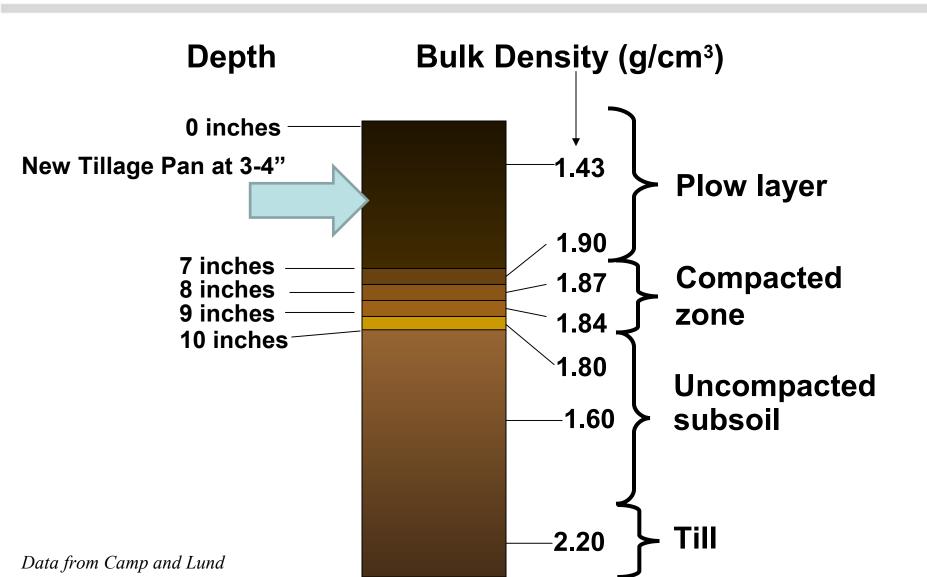
Long Term No-Till vs. Rotational Tillage


Both Fields are a Corn/Soybean Rotation

These pictures are of a newly emerging corn crop

NoTill soybeans then StripTill Corn

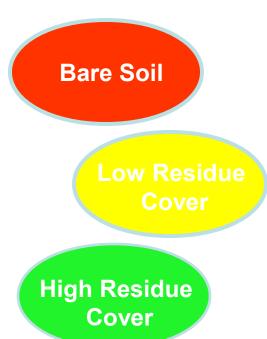
NoTill Soybeans then Tilled corn



Source: Hiedelberg University

What changed in AG since 1995

- 1) More Conservation Tillage less soil mixing of P in top 2 inches.
- 2) Larger Equipment More Soil Compaction
- 3) Crop rotations Less wheat, more beans/ beans
- 4) More tile-Spaced closer together, more surface inlets.
- 5) Fertilizer Enhancers (Avail/Jumpstart)
- 6) Less Soil Organic Matter


Bulk Density and Compaction

Dynamic Properties: Infiltration

- If rainwater runs off field.... It is not available to the crop
 - Dynamic Soil Property greatly influenced by management

Tillage System	Water Infiltration Rate after 1 Hour (in/hour)		
Plowed, disked, cultivated, bare surface	.26		
No-tillage, bare surface	.11		
No-tillage, 40% cover	.46		
No-tillage, 80% cover	1.04		

Residue cover prevents soil crusts

Saving Nutrients in the Soil

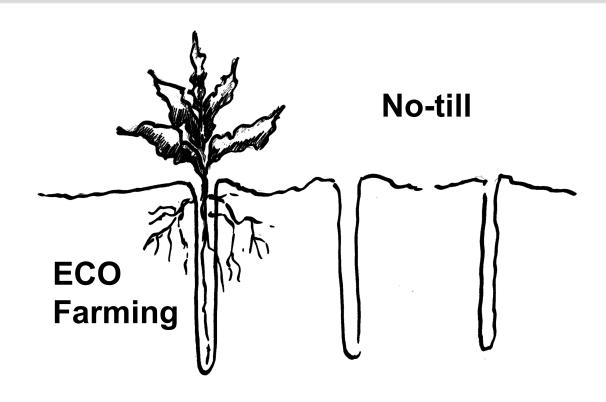
...is related to the speed of Water!

If the velocity of water is doubled how many more nutrients travel in a stream with the water?

```
26 = 64 times more nutrients lost!
```

```
1 to 2 mph 64x
2 to 4 mph 128x
```

4 to 8 mph 256x


8 to 16 mph 512x

16 to 32 mph 1,024x

Benefits of Cover Crops

- Increase water infiltration Move SRP_i
 down into soil profile.
- Decrease bulk density and increase pore space for both air and water – Less saturated soils.
- Increase soil organic matter content which improves soil structure and holds P tighter SRP_i< EP_o and FeP_i< Res P_o

N0-TILL creates macropores

ECO Farming & live roots acts like a biological valve to absorb N and P.

Managing plant roots affects nutrient recycling

Additional Facts about FeP

- FeP_i Mediated or changed by soil microbes (Hedley, 1982)
- FeP_i can be reservoir of P when soil P is low (Kuo, 2003; Zhang 1997) and is considered to be plant available (Zhang, 1997).
- At high fertilization, SRP_i can easily be converted to FeP_i (Kuo, 2003; Zhang, 1997).

Cover Crops and Phosphorus Speciation in Ohio

Why so much SRP in Surface Water?

Dr. K. Rafiq Islam, Research Scientist & Alan Sundermeier, Associate Professor Jim Hoorman, Assistant Professor, Agriculture and Natural Resources hoorman.1@osu.edu

Continous Corn -No Fertilizer

Year	SRP	CaP	FeP	Res P	Total P
1988	150	1390	233a	330	722a
1993	129	1357	187b	287	623b

- •Five year study on Rosalie Clay soil in Canada (Zhang, 1997)
- •CaP remained constant for all 5 years even when 44 and 132 kg P/ha added as fertilizer.
- •FeP acted as soil reservoir for P, releasing P_i when SRP was low and absorbing P_i when SRP was high.

Additional P_o Facts

- About 1% of soil organic P is released each year (Hedley, 1982, Zhang, 1997).
- About 56% of soil P in Res P_o. This fraction remained constant on fertilizer plots but decreased 14% on unfertilized plots.
- P_o is a major source of Plant P when SRP_i is limiting and they found that inadequate SRP_i may deplete P_o more than P_i sources (Tiessen et al, 1984).

Additional P_o Facts

- P_o released to P_i is dependent on the release of phosphatase enzymes in response to low P_i availability and is related to root activity and soil microbes (Tiessen et al, 1984).
- Kuo, 2003 found that once an undisturbed soil is tilled or turned under, P_o is mineralized quickly to P_i but then P_o is limited? Why (Lost as carbon dioxide in air.)
- CaP may also be transformed to P_o by soil microbes but this process is more limited.

Additional P_o Facts

- Chauban et al, 1981 found that additions of cellulose stimulated microbial activity and they presumed that P₁ was immobilized as P₀.
- Hedley, 1982 found that soil P_o was increased in a P rich soil with additions of SOM and P fertilizer, however; in a P deficient soil, additional SOM and P fertilizer are required before any buildup of P_o occurred.