

Thinking Outside the Lake: How can management efforts benefit Western Lake Erie and its tributaries?

Scott Sowa, Conor Keitzer, Stu Ludsin, Anthony Sasson, Maura O'Brien, Carrie Volmer-Sanders, Matt Herbert, Gust Annis, August Froelich, Jeff Arnold, Mike White, Haw Yen, Prasad Daggaputi, Chris Winslow, Jay Atwood, Mari Vaughn-

Johnson, Charlie Rewa, and Dale Robertson

Overview

- Focus on Western Lake Erie (WLE)
 Wildlife CEAP
- Begin with some context
- End with some examples of potential applications from Saginaw Bay

Saginaw Bay and WLE Wildlife CEAP Projects

Overview of USDA NRCS CEAP

- Goal: improve efficacy of conservation practices and programs by providing the science and education needed to enrich conservation planning, implementation, management decisions, and policy
- Providing valuable information to managers and policy makers through multiple complementary components
- Components
 - Watershed
 - Cropland
 - Wildlife
 - Wetland
 - Grazing Lands

Fundamental Questions We Are Trying to Answer

Relating Conservation Actions to Desired Outcomes

Science to Inform Strategic Conservation

Getting the right conservation practices to the right places, in the right amount, at the right time, as efficiently as possible, to achieve desired ecological & socioeconomic outcomes.

Western Lake Erie Gets All the Attention, but...

Western Lake Erie

Tributaries

Fishable?

Swimmable?

Arteries of the Lake

Closer to Source and Solution

Specific Questions Addressed by Our Project

- 1. What is the current baseline stream health across the WLEB?
- 2. What water quality parameters are likely limiting the stream fish community?
- 3. How will stream health improve with additional investment in AG nps conservation practices?
- 4. How much investment is needed to achieve the WLE 40% total phosphorus load reduction target?
- 5. If we meet this 40% target will we also restore stream health?

General Modeling Methods with Key Data Inputs and Model Outputs

Response Variables

Water quality and flow

- Total nitrogen
- Total phosphorus
- Suspended sediments
- Stream discharge

Biological measures

- Relative abundance of top predators
 - Often the first to decline
 - Important ecologically and recreationally
- Index of biotic integrity (IBI)
 - Widely adopted and accepted
 - Reflects overall fish community health

Specific Questions Addressed by Our Project

- 1. What is the current baseline stream health across the WLEB?
- 2. What water quality parameters are likely limiting the stream fish community?
- 3. How will stream health improve with additional investment in AG nps conservation practices?
- 4. How much investment is needed to achieve the WLE 40% total phosphorus load reduction target?
- 5. If we meet this 40% target will we also restore stream health?

SWAT Modeling Development

 Completed by SWAT modeling team at Grassland Soil and Water Research Lab in Temple, TX

- Yen, H., R. T. Bailey, M. Arabi, M. Ahmadi, M. J. White, and J. G. Arnold. 2014. The Role of Interior Watershed Processes in Improving Parameter Estimation and Performance of Watershed Models. Journal of Environmental Quality, published online. doi:10.2134/jeq2013.03.0110
- <u>Daggupati, P.,</u> H. Yen, M. White, R. Srinivasan, J. Arnold, S. C. Keitzer, and S. Sowa. **2015.** Impact of model development, calibration and validation decisions on hydrological simulations in West Lake Erie basin. Hydrological Processes 29: 5307-5320.
- Yen, H., M. J. White, S. C. Keitzer, P. Daggupati, J. G. Arnold, J. D. Atwood, M. E. Herbert, M. Johnson, S. A. Ludsin, R. Srinivasan, S. P. Sowa, and D. M. Robertson. 2016. Soft-Data-Constrained, NHDPlus Resolution Watershed Modeling and exploration of applicable conservation scenarios. Sci. Total Env. 569-570: 1265-1281.

SWAT Model Development

- Model calibrated (1990-1999) and validated (2000-2006)
- For TP, TN, Susp. Sed., and Q at five gauges
- Models were then downscaled

SWAT Model Outputs

 Downscaled SWAT model to provide water quality and flow predictions at...

HUC12 scale

391 subwatersheds Average size = 72 km² 13,156 HRUs

NHD+ scale

11,335 subwatersheds Average size = 2.61 km² 34,807 HRUs

Estimated Baseline Conditions

Limiting

No data

• ~34% in the summer

in the spring

WQ thresholds for all three stressors

Result Highlights

- Many streams in the WLEB have high pollutant concentrations that are likely degrading stream health
- Managing for multiple stressors (N, P, Sed) is vital because they
 often co-occur and focusing management actions on one could
 make things worse for another
- A suite of conservation practices including erosion control and nutrient management are needed
- These practices will need to be implemented on essentially all agricultural lands to have meaningful improvements in stream health across much of the WLEB
- Results suggest the TP 40% reduction target for Lake Erie is achievable, but at a significant cost
- Even if we meet this 40% target many WLEB streams will likely still be impaired by nonpoint source pollution

Specific Questions Addressed by Our Project

- 1. What is the current baseline stream health across the WLEB?
- 2. Which water quality parameters are likely limiting the stream fish community?
- 3. How will stream health improve with additional investment in AG nps conservation practices?
- 4. How much investment is needed to achieve the WLE 40% total phosphorus load reduction target?
- 5. If we meet this 40% target will we also restore stream health?

Biological Models of Stressor-Response Relationships

- Used existing fish community data- 1990 to 2012
 - IDEM = 18
 - MIDEQ = 101
 - OEPA = 722

Biological Models of Stressor-Response Relationships

Used quantile regression to identify ceilings in stressor-response relationships

General procedure for developing robust predictive biological models

Developed candidate set of quantile regression models

$$y = Discharge + TP + Susp.Sed. + TP \times Susp.Sed.$$

 $y = Discharge + TN + Susp.Sed. + TN \times Susp.Sed.$
 $\tau = 0.97$

- Used model selection to identify best model
- k-fold cross validation (k = 10) to assess model accuracy
- Used validated models to then forecast potential biological conditions

Multiple stressors are affecting stream biological conditions

Baseline stream health

Result Highlights

- Many streams in the WLEB have high pollutant concentrations that are likely degrading stream health
- Managing for multiple stressors (N, P, Sed) is vital because they
 often co-occur and focusing management actions on one could
 make things worse for another
- A suite of conservation practices including erosion control and nutrient management are needed
- These practices will need to be implemented on essentially all agricultural lands to have meaningful improvements in stream health across much of the WLEB
- Results suggest the TP 40% reduction target for Lake Erie is achievable, but at a significant cost
- Even if we meet this 40% target many WLEB streams will likely still be impaired by nonpoint source pollution

Specific Questions Addressed by Our Project

- 3. How will stream health improve with additional investment in AG nps conservation practices?
- 4. How much investment is needed to achieve the WLE 40% total phosphorus load reduction target?
- 5. If we meet this 40% target will we also restore stream health?

Conservation Practices

Agricultural Conservation Practices

- Residue mgmt. tillage (329)
- Cover crop (340),
- Wind break (380)
- Field border (386)
- Riparian herbaceous buffer (391)
- Riparian forest buffer (392)
- Filter strip (393)
- Surface roughening (609)
- Nutrient management (590)

Erosion Control Practices

Covers all desired practices, except wetlands and drainage water management

WLE Management Scenarios

Annual incentive payment <u>and</u> program cost estimates In Millions

	Critical (~5%)	Critical & Mod (~50%)	All (100%)
Erosion Control	\$5	\$56	\$128
Erosion Control & Nutrient Mgmt.	\$8	\$150	\$263

WLE Improvements in Stream Health (IBI)

WLE Improvements in Stream Health (Top Predators)

Farm acre types treated

Result Highlights

- Many streams in the WLEB have high pollutant concentrations that are likely degrading stream health
- Managing for multiple stressors (N, P, Sed) is vital because they
 often co-occur and focusing management actions on one could
 make things worse for another
- A suite of conservation practices including erosion control and nutrient management are needed
- These practices will need to be implemented on essentially all agricultural lands to have meaningful improvements in stream health across much of the WLEB
- Results suggest the TP 40% reduction target for Lake Erie is achievable, but at a significant cost
- Even if we meet this 40% target many WLEB streams will likely still be impaired by nonpoint source pollution

Specific Questions Addressed by Our Project

- 1. What is the current baseline stream health across the WLEB?
- 2. What water quality parameters are likely limiting the stream fish community?
- 3. How will stream health improve with additional investment in AG nps conservation practices?
- 4. How much investment is needed to achieve the WLE 40% total phosphorus load reduction target?
- 5. If we meet this 40% target will we also restore stream health?

Estimating Costs to Achieve 40% TP Reduction Goal for WLE and What it Means for Streams

Result Highlights

- Many streams in the WLEB have high pollutant concentrations that are likely degrading stream health
- Managing for multiple stressors (N, P, Sed) is vital because they
 often co-occur and focusing management actions on one could
 make things worse for another
- A suite of conservation practices including erosion control and nutrient management are needed
- These practices will need to be implemented on essentially all agricultural lands to have meaningful improvements in stream health across much of the WLEB
- Results suggest the TP 40% reduction target for Lake Erie is achievable, but at a significant cost
- Even if we meet this 40% target many WLEB streams will likely still be impaired by nonpoint source pollution

Summary

- Must address multiple water quality factors for streams
- Must use a combination of erosion control and nutrient management practices
- 40% reduction goal for TP appears achievable
- Reaching this 40% goal for WLE will not address all issues for streams
- Can't forget about the streams, must find win-wins

Outputs from our Project Can Help Identify Win-Wins

Some Benefits of This Approach

- Can speak in multiple currencies
 - \$\$, Acres, Water Quality, Fish Health
- Can set and track realistic related sets of goals
 - long-term
 - short-term (milestones)

Can Support New Conservation Strategies

Cass River Watershed Pilot (Sanilac CD)

 Test if information and decision tools can foster changes via traditional Farm Bill to meet conservation action goals

Saginaw Bay Regional Conservation Partnership Program (RCPP)

 Set watershed scale sustainability goals and related conservation action goals to drive changes in behavior through supply chain demand

Pay for Performance

 Set ecologically meaningful sediment reduction goals and use online tools to pay farmers per ton of sediment reduced

Relevant Publications

Special issue of JGLR

- <u>Kerr, J.</u>, DePinto, J. A., McGrath, D., Sowa, S.P., Swinton, S. M. **2016**.
 Sustainable management of Great Lakes watersheds dominated by agricultural land use. J. Great Lakes Res. 42(6): 1252-1259.
- <u>Sowa, S.P.</u>, Herbert, M.E., Mysorekar, S.S., Annis, G., Hall, K., Nejadhashemi, A.P., Woznicki, S.A., Wang, L., and Doran, P. **2016**. How much conservation is enough? Defining implementation goals for healthy fish communities.
 J. Great Lakes Res. 42(6): 1302-1321.

- <u>Fales, M.K.</u>, R. Dell, M.E. Herbert, S.P. Sowa, J. Asher, G. O'Neil, P.J. Doran, B. Wickerham. **2016.** Making the leap from science to implementation: Strategic agricultural conservation in Michigan's Saginaw Bay watershed. J. Great Lakes Res. 42(6): 1372-1375.
- <u>Keitzer, S. C.</u>, Ludsin, S. A., Sowa, S.P., Annis, G., Daggupati, P., Froelich, A., Herbert, M. Johnson, M. V., Yen, H., White, M., Arnold, J. G., Sasson, A. and Rewa, C. **2016**. Thinking outside the lake: How might Lake Erie nutrient management benefit stream conservation in the watershed? J. Great Lakes Res. 42(6): 1322-1331.

Other relevant upcoming publications

- Ross, J.A., M.E. Herbert, S.P. Sowa, J.R. Frankenberger, K.W. King, S.F. Christopher, J.L. Tank, J.G. Arnold, M.J. White, and H. Yen. 2016. A synthesis and comparative evaluation of factors influencing the effectiveness of drainage water management. Agricultural Water Management 178: 366-376.
- Hall, K.R., Herbert, M.E., Sowa, S.P., Mysorekar, S., Woznicki, S.A., Nejadhashemi A.P., and Wang, L. 2017.
 Reducing current and future risks: Using climate change scenarios to test an agricultural conservation framework. J. Great Lakes Res. 43(1): 59-68.
- **Scavia, D.**, Kalcic, M., Logsdon Muenich, R., Read, J., Aloysius, N., Arnold, J. G., Boles, C., Confesor, R., DePinto, J., Gildow, M., Martin, J., Redder, T., Sowa, S.P., White, M. J., and Yen, H. *In Press.* Multiple models guide strategies for agricultural nutrient reductions. Frontiers in Ecology and the Environment.

Acknowledgements

Wildlife component of the USDA NRCS Conservation Effects Assessment Project

Charles Stewart Mott Foundation

Herbert H. and Grace A. Dow Foundation

The Nature Conservancy's Great Lakes Fund for Partnership in Conservation Science and Economics.

