# Phosphorus losses in surface runoff and tile drainage from agricultural fields using multiple conservation strategies for phosphorus management

#### Merrin L. Macrae<sup>1</sup>,

Brunke<sup>2</sup>, R., Duits<sup>3</sup>, C., English<sup>4</sup>, M.C., Ferguson<sup>2</sup>, G., Land<sup>1</sup>, V., Lozier<sup>1</sup>, T., McKague<sup>2</sup>, J., O'Halloran<sup>3</sup>, I., Opolko<sup>4</sup>, G., Plach<sup>1</sup>, J., and Van Esbroeck<sup>1</sup>, C.

Department of Geography and Environmental Management, University of Waterloo, Waterloo, Ontario, Canada

Ontario Ministry of Agriculture, Food and Rural Affairs, Ontario, Canada

3 School of Environmental Sciences, University of Guelph, Ridgetown, Ontario Canada

Department of Geography and Environmental Studies, William Laurier University, Waterloo



Water quality issues related to algal growth are a priority issue in North America



#### **IJC LEEP Report**

February 2014



#### History

- In '70s, serious eutrophication due to excess P loadings
- Mid-80s, loads cut in ½ (mainly sewage upgrades and reduced P in detergents)
- Early 2000's, symptoms of excess P appear again
- 2011 5000 km<sup>2</sup> algal bloom (3X any previous) = 10 on the severity scale
- Today rural/urban runoff (non-point) is dominant source of P load to lake (>50%)
- Bulk of loading occurs during snowmelt and heavy rains

#### **Report's Objective**

To provide advice to help restore the lake's ecosystem by reducing nutrient loads

- Significant efforts to reduce P loads recently
- 2015 largest on record "broke the scale" → 10.5 on severity index
- How do we deal with this issue?

#### **Overview**

- What is causing the blooms? Discussion of contaminants, sources and pathways
- How is P lost from agricultural watersheds?
   Surface and subsurface processes
- What are some of the BMPs that we are using to try to stop this? How do they work?



- Importance of seasonality in the Great Lakes Region
- Are selected BMPs working to reduce P loads from Ontario fields? Overview of recent research findings in Ontario

## What is causing the algal blooms?

- Lakes: Phosphorus (P) = limiting nutrient but N contributes
- Algal productivity related to P concentrations in lakes
- Excess P "fertilizes" algae → blooms







#### "Forms" of Phosphorus



#### How is NPS P Loading Estimated?



Source: Baker and Richards – Heidelberg University

# Where is the P Coming From? Breakdown of P Load By Major Source



Source: Ohio EPA, April 2010 (Ohio Lake Erie Phosphorus Task Force Final Report)

#### Where is the Phosphorus Coming From?

#### By Major Lake Erie Basin



Source: Ohio EPA, April 2010 (Ohio Lake Erie Phosphorus Task Force Final Report)

#### **How is P Lost From Agricultural Fields?**







#### **Understanding P in Subsurface Runoff**





Surface vs. Subsurface Tile Drainage

It is Important to Make the Distinction!

#### **Surface Drainage**





**Subsurface Drainage** 







#### **Extent of Tile drainage in Great Lakes Region**







#### Removal of tile drains is not an option...



#### Some Current BMPs...

#### No-till Vs Tillage:

- No till can lead to "stratified" P and more macropores → more P in tile drainage, maybe more dissolved P in surface flow but less PP
- Tillage breaks up pores, mixes in P

   may lessen load to tile drains, but more erosion in surface runoff
- 4Rs e.g. Nutrient management & subsurface placement may help this





#### Some Current BMPs...

Cover Crops, Riparian Buffer Strips, Grassed Waterways, WASCoBs

- Build soil OM
- Slow surface erosion
- But may not work in winter, and may supply dissolved P





### Importance of Seasonality? Sediment entering Lakes Erie & St. Clair, March



#### Research on P Loss in Ontario 2011 – 2015

#### **Research Questions:**

- (1)When is most P lost during the year? What form is it in (sediment or dissolved)?
- (2)What pathway(s) are most important for P loss? Tiles or surface runoff?
- (3)Do our management practices impact these losses? If so, which ones are most important?
- → Examples of practices studied: tillage, nutrient management, subsurface P placement (banding), cover crops

#### **Collaborators & Partners**

#### **Farmers & Farming Organizations**

ANSWERS (D. Lobb, K. Eisses, B. McIntosh, K. Nixon, S. McRae, L. Taylor)

Innovative Farmers of Ontario (IFAO)

**Land Improvement Contractors of Ontario (LICO)** 

**Ontario Soil and Crop Improvement Association** 

#### **Universities**

Waterloo, Guelph, Wilfrid Laurier Universities

#### **Government**

Ontario Ministry of Agriculture, Food and Rural Affairs Essex Region and Upper Thames Region Conservation Authorities Agriculture and Agri-Food Canada



7 sites instrumented with runoff monitoring equipment, automated water samplers and weather stations (year-round, 2011 to present)



#### **Research Sites...**

|      | Contrib.<br>Area (ha) | Land Slope<br>(%)  | Soil Name<br>(texture)   | Soil P<br>(ppm)<br>Olsen | Tile<br>Drain<br>Depth<br>(m) | Tile<br>Space<br>(m) | Rotation       | Tillage                                 |
|------|-----------------------|--------------------|--------------------------|--------------------------|-------------------------------|----------------------|----------------|-----------------------------------------|
| LON  | ~8                    | 0.5-3.5<br>uniform | Perth/Listowel (SiL)     | 10                       | ~0.9                          | 13.9                 | Cg-Sb-<br>WWcc | Rotational Vertical till                |
| ILD  | ~8                    | 0.5-3<br>hummocky  | Thorndale/Em bro (SiL)   | 16                       | ~0.9                          | 9.1                  | Cg-Sb-WW       | Rotational<br>Strip Till                |
| BVL  | ~4                    | 0.5 - 3.6          | Bainsville<br>(SiL)      | 15                       | ~0.9                          | 12                   | Cg-Sb-WW       | Rotational<br>Ridge Till                |
| ESS  | ~7                    | 0-0.5<br>~ level   | Brookston (C)            | 13                       | 0.7                           | 10.7                 | Cg-Sb          | Fall chisel/plow                        |
| INN1 | ~0.3                  | 1.5                | Bondhead/Gu<br>erin (SL) | 25                       | 1                             | 12                   | Cg-Sb-WW       | Rotational<br>Disk Harrow<br>(shallow)* |
| INN2 | ~0.3                  | 0.5                | Bondhead/Gu<br>erin (SL) | 5                        | 1                             | 12                   | Cg-Sb-WW       | Rotational<br>Disk Harrow<br>(shallow)* |

- Working farms, volunteer cooperators
- Aside from Essex, most are silt loams or sandy loams
- P is carefully managed → low STP, reduced till, subsurface P placement (banding)

#### **General Field Observations: Precipitation**

- 1. Seasonal Distribution of Precipitation
- 2. Year-to-Year Variability of Precipitation/Seasonal Distribution



#### **General Field Observations: Runoff**

3. Inter-annual Variability in Seasonal Runoff (Combined Surface + Tile)



#### **Pathways for Runoff**

(LON Site Example)





#### **Pathways for Runoff**









Winter

**JFM** 

#### **Pathways For Runoff**

(ESS Site Example)





- Most P is lost with runoff events!
- Given that most runoff is lost during nongrowing season (NGS), most P loss also happens during NGS!



#### Median and range in P concentrations in tile effluent and overland flow during events

- Overland flow [P] > tile drain [P]



Macrae, Brunke and McKaque, unpublished data





# Relative Contribution of Tile and Surface Runoff to Annual P Load

(LON SITE: MAY 2012 - APR 2013)

#### **General Conclusions**

Despite tile runoff contributing to the majority of the total runoff leaving a field:

- Surface runoff contained the majority of DRP
- Surface = Tile for TP contribution

Therefore, surface runoff is a very important pathway for annual P loss.

- Erosion control
- Improving soil infiltration capacity (to reduce runoff)

are still key steps to reducing P loss from fields

# When is most P lost and through which pathways?



- 78-90% of flow
- 20-67% of DRP
- 40-77% of TP



Most P lost as particulate (sediment)

Month

Van Esbroeck et al. 2016



# Nutrient Application Timing and Placement Effects on P Loss



Source: C. Van Esbroeck - MSc Thesis, UW



- Tillage did not increase P loss when used with banding
- Lower losses from lower soil P site



#### Does Event "Type" Matter?





#### **Crop/Cover Effects on P Loss**

Cover Crop Erosion Control (P loss) Benefits

(Chatham-Kent Example)

Visual Observations (erosion)



Field with Over-Winter Cover Crop



Field Without Cover Crop



#### **Crop/Cover Effects on P Loss**

## Cover Crop Erosion Control (P loss) Benefits (Chatham-Kent Example)

Visual Observations (Soil Water/Structure)



Field with Over-Winter Cover Crop



Field Without Cover Crop

#### **Cover Crops & P Loss After Freezing**

- Yes, cover crops can lose P after freezing
- But depends on crop type we can use this to optimize cover crop choices!
- Most P lost after first freeze-thaw event often occurs in lateral autumn in Ontario most vegetation P may go into soil before winter hits!
- Rainfall pulls less P from cover crops than surface flooding can
   we use this knowledge to optimize use of cover crops?
- Currently doing work on termination & winter P loss

ozier & Macrae, 2016; photo by @t\_vollmer via Twitter

#### Will control structures in tiles work?



How effective can they be if they are not left in place during peak flow due to frost potential?



#### **Summary:**

Can We Reduce P Loss from Cropped Fields?

 Use of multiple (stacked) BMPs – need to manage in surface and subsurface

 Slow water flow down – force underground if possible (at least in silt loams and sandy loams) – clays are trickier!



Build and maintain soil health

#### Acknowledgements

#### Funding:

- Ontario Ministry of Agriculture, Food and Rural Affairs Best Management Practices Verification and Demonstration Program, Lake Simcoe Program, New Directions Program
- Environment Canada Lake Simcoe Clean Up Fund
- Growing Forward (Agricultural Adaptation Council Farm Innovation Plan [FIP]) and CAAP Programs
- OSCIA, LICO
- Logistical & Technical Support: ANSWERS farmers (D. Lobb, K. Eisses, B. McIntosh, K. Nixon, S. McRae, L. Taylor); Innovative Farmers of Ontario (IFAO); Land Improvement Contractors of Ontario (LICO), A. MacLean, E. Thuss, I. Martin, J. English, J. Owens, C. Duke