In-Season N Applications for Corn: Pros and Cons

MI SWCS Seminar
March 2, 2018
Effect of N application rate on corn grain yield along with return to N and N recovery in the whole plant at R6 for each 40 lb/a increment of N fertilizer at Arlington, 2014

<table>
<thead>
<tr>
<th>N Application Rate, lb N/a</th>
<th>Corn Yield, bu/a</th>
<th>N Recovery, %</th>
<th>Return to N, $/a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>167</td>
<td>$67</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>190</td>
<td>$60</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>211</td>
<td>$60</td>
</tr>
<tr>
<td></td>
<td>160</td>
<td>228</td>
<td>$46</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>231</td>
<td>$4</td>
</tr>
</tbody>
</table>

PFP, bu/lb N
- 4.8
- 2.6
- 1.9
- 1.4
- 1.1

lb N/bu
- 0.21
- 0.38
- 0.53
- 0.69
- 0.89

AE, ∆bu/lb N
- 0.58
- 0.55
- 0.51
- 0.40
- 0.29

AE a true measure of fertilizer NUE, accounts for soil N supply.
Corn yield response in MI
previous crop = soybean
Split/Late Applications To Corn: Should I Be Using Them?
Study Background

N Timing
- Preplant: PP
- Sidedress: SD
 - V6, ~18”
- Split: 40PP + SD
- Preplant + Late: PP + 40L
 - Late = 10 d before VT
- Triple split: 40PP + SD + 40L

N Sources
- Preplant: urea broadcast, incorporated
- Sidedress: UAN sub-surface band between rows
- Late: UAN with Agrotain surface band between rows

Locations
- Lancaster, well drained
- Marshfield, somewhat poorly drained

Previous crop = corn

Research funded by Wisconsin Fertilizer Research Program
Lancaster

![Graph showing yield vs. total N application rate for 2014 and 2015.]

- **2014**
 - PP
 - SD
 - 40PP+SD

- **2015**
 - PP
 - SD
 - 40PP+SD

Yield, bu/a vs. Total N Application Rate, lb N/a
Lancaster

<table>
<thead>
<tr>
<th>Year</th>
<th>EONR, lb/a</th>
<th>Yield, bu/a</th>
<th>NUE @EONR, Δbu/lb N</th>
<th>Return to N, $/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>181</td>
<td>203</td>
<td>0.49</td>
<td>252</td>
</tr>
<tr>
<td>2015</td>
<td>116</td>
<td>185</td>
<td>0.73</td>
<td>257</td>
</tr>
<tr>
<td>2016</td>
<td>162</td>
<td>219</td>
<td>0.67</td>
<td>325</td>
</tr>
</tbody>
</table>
Marshfield, 2014

- 40PP+SD+40L sig. less yield at 120 lb/a
- Otherwise no yield difference between timings

- wet May-June, dry July, wet Aug

<table>
<thead>
<tr>
<th>Timing</th>
<th>EONR, lb/a</th>
<th>Yield, bu/a</th>
<th>NUE @EONR, Δbu/lb N</th>
<th>Return to N, $/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>179</td>
<td>185</td>
<td>0.58</td>
<td>301</td>
</tr>
</tbody>
</table>
Marshfield, 2015

<table>
<thead>
<tr>
<th>Timing</th>
<th>EONR, lb/a</th>
<th>Yield, bu/a</th>
<th>NUE @EONR, Δbu/lb N</th>
<th>Return to N, $/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP</td>
<td>210</td>
<td>151</td>
<td>0.22</td>
<td>88</td>
</tr>
<tr>
<td>SD</td>
<td>109</td>
<td>177</td>
<td>0.66</td>
<td>214</td>
</tr>
<tr>
<td>40PP+SD</td>
<td>170</td>
<td>184</td>
<td>0.46</td>
<td>217</td>
</tr>
<tr>
<td>PP+40L</td>
<td>176</td>
<td>177</td>
<td>0.41</td>
<td>190</td>
</tr>
</tbody>
</table>

Rescue N applications 1 wk before VT were effective if recouping yield loss.
Marshfield, 2016

The table below summarizes the findings from the Marshfield, 2016 experiment on the impact of different nitrogen application rates and timing on yield and economic return.

<table>
<thead>
<tr>
<th>Timing</th>
<th>EONR, lb/a</th>
<th>Yield, bu/a</th>
<th>NUE @EONR, △bu/lb N</th>
<th>Return to N, $/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP</td>
<td>≥210</td>
<td>≥154</td>
<td>0.37</td>
<td>200</td>
</tr>
<tr>
<td>SD</td>
<td>≥210</td>
<td>≥191</td>
<td>0.55</td>
<td>329</td>
</tr>
<tr>
<td>40PP+SD</td>
<td>≥210</td>
<td>≥189</td>
<td>0.54</td>
<td>322</td>
</tr>
<tr>
<td>PP+40L</td>
<td>≥250</td>
<td>≥168</td>
<td>0.37</td>
<td>235</td>
</tr>
</tbody>
</table>

The scatter plot on the right shows the relationship between total N application rate and yield, with different symbols representing different timing strategies: PP (pre-plant), SD (side-dress), 40PP+SD, PP+40L, and 40PP+SD+40L.
Monthly Rainfall

All sites planted in May

Red line indicates normal precipitation for the month
Conclusions

- Waiting to apply N until 1 week before VT may cause yield loss
- On well drained soils, in-season N application,
 - Do not necessarily produce more yield
 - Are not always more profitable
- On somewhat poorly drained soils,
 - PP resulted in significant yield reductions
 - SD greatest profitability
 - Rescue N application 1 week before VT can recoup yield loss
 - How much yield can be regained will vary based on weather/site conditions
Thank You!

laboski@wisc.edu
608-263-2795

www.NPKetc.soils.wisc.edu
http://ipcm.wisc.edu/