SOM Management Focus on C instead of T

United States Department of Agriculture is an equal opportunity provider and employer.

Jerry Grigar NRCS MI State Agronomist CCA
Soil Health: the continued capacity of the soil to function as a vital living ecosystem that sustains plants, animals, and humans.

These are both Buxton Silt Loam

Dorn Cox, 2012

Bianca Moebius-Clune, 2012

Standard Soil Test says this soil is better!?
Tillage Erosion

- A form of erosion limited to movement of soil within a field.
- Topsoil is removed from the high points of fields and exposes subsoil.
- Total soil removed may exceed that of water erosion.
Tillage Erosion

Three causes that move soil downslope:

Tilling- up-and-down the slope

Tilling- along the contour

Moldboard Plowing- throws soil downslope

All tillage is BS!

Burns up SOM!

Soil Organic Matter

Foundation of Productive Soil

- Promotes Healthy Crops
- Supplies Carbon
- Regulates water, air & nutrient supply
- Supplies ½ N & ¼ P
- Depleted by Tillage Erosion
- Key indicator for soil quality!

Water & Tillage Erosion-bald spots
Conservation Practices to Build SOM

1. Erosion control
2. Crop Rotation
3. No-till
4. Cover Crops
5. Manure or compost
6. Nutrient Mgt. (N)
7. Controlled Traffic systems
8. On-farm Adaptive Nutrient Mgt. Trials
Soils With Sufficient SOM

- Increased water holding capacity
- Need Less fertilizer
- Higher yields
- Suppress diseases

2015- 33 years
Zone tillage
Corn -270
Soys -70
Wheat- 100
SOM Foundation

Sustainable cropping systems
• Restore SOM

SOM primary influence of:
1. Physical
2. Biological
3. Chemical

For Healthy and Productive Soils
SOM & Soil Biology

- Habitat & Food source
- Disease suppression
- Soil aggregation
- Soil Chemistry
- Storehouse for Nutrients.
SOM Loss

- Tillage Induced CO$_2$ Loss
- Soil & Tillage Erosion
- Low Nitrogen Input
- High N Demand Crops (high C: N ratios)
- Soil addicted to fertilizer.
- SOM first to Erode!
Stable SOM (Humus)

Physically protected & extremely resistant to decomposition
Amount of **HUMUS** impacted by:

1. Residue removal
2. Burning
3. Tillage
4. Cover Cropping
Slow SOM Pool- Water Stable Aggregates

Less turnover time than Humus

SLOW SOM is:
1. Decomposed materials
2. Crop residues / roots
3. Microbial products- glomalin
4. Protected – physically & biochemically
5. Interior of WSA
Active SOM Pool (LIVING)

Turnover time months to years
Includes soil microbes but
Primarily plant tissues

1. Faster turnover time
2. Important nutrient release
3. Helps develop slow pool
Legume Cover Crops - Active Pool

Needed for organic N release:
- Protein N
- Soluble C (sugars)

Nutrient Sources needed to build SOM:
- Nitrogen
- Carbon
Crop Residue C:N ratio < 25

Promotes:
• Rapid decomposition
• Mineralization of N

C : N ratio measures N-enrichment & availability

Ex: Legume Cover crops & perennial legumes- alfalfa
Crop Residue C:N ratio > 25

- Additional N
- Persists longer
- Contributes more C

Continuous No-till Corn:
- Immobilizes N
- Yield slump
Two ways to build SOM

1. Slow down SOM decomposition rates
 (Eliminate tillage)

2. Enhance Carbon inputs
 (Add compost, cover crops, manure, crop residue & increase yields)
SOM Building

Depends on past use or abuse of soil.

Must transfer C from Active & Slow Pools into Humus
Building the Slow Pool

Add organic materials

1. Leave crop residue, roots & cover crops in place

2. Apply manure amendments

3. Roots critical to build slow & stable pool
Legume / Pasture hay roots

- Large taproots
- Slow to breakdown
- Good to increase SOM
- Improve infiltration & reduce runoff
Legume & Pasture Roots Increase SOM

Kellogg Biological Station LT Research:

1. Crop Rotation w/ Alfalfa increased soil C (60%) vs CG/Soy/WW system

2. NO-till increased soil C (40%)
To Maximize Yield Potential:

Manage Hi and Low quality residue with fertilizer sources

- SOM + 1.4 % in 30 yrs.

No-till w/ Alfalfa
7 of 30 yrs.
P300 - Fertilizer 2016

Corn ESN Starter Fertilizer

Strip Banded Twin Rows

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starter: lb/ac</td>
<td>550</td>
</tr>
<tr>
<td>ESN</td>
<td>200</td>
</tr>
<tr>
<td>AMS</td>
<td>21</td>
</tr>
<tr>
<td>Zn</td>
<td></td>
</tr>
<tr>
<td>Total N</td>
<td>210</td>
</tr>
<tr>
<td>Total Organic N:</td>
<td></td>
</tr>
<tr>
<td>OM 5%</td>
<td>100</td>
</tr>
<tr>
<td>Soy N credit</td>
<td>40</td>
</tr>
</tbody>
</table>
N Management 2015

High ESN Starter
32 yrs. No Till

Urea
Broadcast tilled
N Management 2015

Urea Broadcast Tilled

High N Starter No Till
Nitrogen Oxide

1. De-Nitrification in wet soils
2. Increased loss using N fertilizer on crops
3. Ag adds 12% GHG- 58% N₂O
4. Global warming potential 310 x CO₂
NRCS 590 Goals: 64 Million Ac

Reduce N_2O Emissions
Slow Release N fertilizers
- Agrium ESN- Environmentally Smart N
- Agrocote Max 1-2M
- Agrocote Max 2-3M
- Agrocote Max 4-5M

Reduce N loss wet years
- Max Release Technology™ is a reacted polymer coating for use on macronutrients and micronutrients to improve nutrient efficiency and plant utilization. The release of nutrition is based upon moisture and temperature, offering predictable longevities, even under the warmest conditions.
SOM Enrichment Plans

1. Diversity of crops
2. Add Compost or manure
3. Crop residues with different C:N ratios
4. Eliminate tillage
5. Add Cover Crops
6. Slow release

Nutrient sources
Crop Residue as a Food Source
Decomposition of SOM

1. Tillage accelerates
2. Smaller residue pieces
3. Residues break down faster
4. Increases food (C)
5. Adds (O₂)
6. Fuels biology fire (bacteria)
7. Releases CO₂
Downward Spiral of Soil Degradation

1. Intensive tillage, insufficient added residues, low diversity, no surface cover
2. Soil organic matter decreases, erosion, subsoil compacted
3. Aggregates break down
4. Surface becomes compacted, crust forms
5. Infiltration decreases
 Erosion by wind and water increases
6. More soil organic matter, nutrients, and top soil lost
7. MORE ponding & persistent wetness, but LESS soil water storage; less rooting; lower nutrient access by plants; less diversity of soil organisms, more disease
8. Crop yields decline
9. Hunger and malnutrition, especially if little access to inputs

Note: soils also degrade without tillage, through overgrazing, compaction, etc

Modified from Building Soils for Better Crops
Tillage Addiction: Downward Spiral in Soil Health

Increased tillage → Compaction → Poor drainage → Reduced soil aggregation → Downward spiral to poor soil health → Declining OM → Unhealthy microbial communities, stressed plants

Modified from Building Soils for Better Crops

Cornell PPT Bianci 2015
Building Aggregates means improving biological functioning through physical and biological methods.

Reduce tillage, increase fresh organic matter availability to decomposers, improve environment for plants and soil organisms.

Brady and Weil, 2002
Managing for C instead of T

1. Soil Erosion when $T = 0$ that is TOLERABLE!

2. Efforts to build Active, Slow and Stable SOM pools must be practiced!
KBS SOM Changes

Manure + Compost can build (old) SOM with complete Corn Stover removal

Manure + rye cover crop provides:
maximum SOM benefit & erosion control

KBS SOM Changes

10 years Dairy compost at 2 ton/ac/yr
• Increased SOM 50%!

Continuous No-till
 ▪ Increased SOM 40%

Manage for C instead of T

Result:

• Improved Ecological Services
• Increased soil productivity
• Better environmental quality

NO Erosion, including gully erosion, should be TOLERABLE!
Manage for C instead of T

ASA Quote:
Only Through Direct Engagement with the Real World can Science free itself to Rediscover the Path Toward Truth.
Vegetative Barriers

Ephemeral gully control

Traps Sediment & heals gully
KBS Vegetative Barrier System.
Locating Gullies w/ SAIS
SOM Management Focus on C instead of T